International Journal of Behavioral Development

Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS) method is one that is built into Mplus software. The potential utility of this method is limited by the fact that the models do not produce traditional model fit indices, standardized coefficients, or effect sizes for the latent interaction, which renders model fitting and interpretation of the latent variable interaction difficult. This article compiles state-of-the-science techniques for assessing LMS model fit, obtaining standardized coefficients, and determining the size of the latent interaction effect in order to create a tutorial for new users of LMS models. The recommended sequence of model estimation and interpretation is demonstrated via a substantive example and a Monte Carlo simulation. Finally, extensions of this method are discussed, such as estimating quadratic effects of latent factors and interactions between latent slope and intercept factors, which hold significant potential for testing and advancing developmental theories.

Aiken L. S., West S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: SAGE.
Browne M. W., Cudeck R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21 (2), 230258. Link
Browne M. W., Cudeck R. (1993). Alternative ways of assessing model fit. In Bollen K. A., Long J. S. (Eds.), Testing structural equation models (pp. 136162). Newbury Park, CA: SAGE.
Busemeyer J. R., Jones L. E. (1983). Analysis of multiplicative combination rules when the causal variables are measured with error. Psychological Bulletin, 93 (3), 549562. doi:10.1037/0033-2909.93.3.549 Crossref
Cham H., West S. G., Ma Y., Aiken L. S. (2012). Estimating latent variable interactions with non-normal observed data: A comparison of four approaches. Multivariate Behavioral Research, 47 (6), 840876. doi:10.1080/00273171.2012.732901 Crossref, Medline
Dawson J. F. (2014). Moderation in management research: What, why, when and how. Journal of Business and Psychology, 29 (1), 119. doi :10.1007/s10869-013-9308-7 Crossref
Gerhard C., Klein A., Schermelleh-Engel K., Moosbrugger H., Gade J., Brandt H. (in press). On the performance of likelihood-based difference tests in nonlinear structural equation models. Structural Equation Modeling.
Gonzalez R., Griffin D. (2001). Testing parameters in structural equation modeling: Every “one” matters. Psychological Methods, 6 (3), 258269. Crossref, Medline
Johnston L. D., O’Malley P. M., Bachman J. G., Schulenberg J. E. (2013). Monitoring the Future national survey results on drug use, 1975-2012. Volume I: Secondary school students. Ann Arbor: Institute for Social Research, The University of Michigan.
Kenny D. A., Judd C. M. (1984). Estimating nonlinear and interactive effects of latent variables. Psychological Bulletin, 96 (1), 201210. Crossref
Klein A., Moosbrugger H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65 (4), 457474. doi:10.1007/BF02296338 Crossref
Klein A. G., Muthén B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42 (4), 647673. doi:10.1080/00273170701710205 Crossref
Kovacs M., Paulauskas S., Gatsonis C., Richards C. (1988). Depressive disorders in childhood. III. A longitudinal study of comorbidity with and risk for conduct disorders. Journal of Affective Disorders, 15 (3), 205217. doi:10.1016/0165-0327(88)90018-3 Crossref, Medline
Little T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford Press.
Little T. D., Bovaird J. A., Widaman K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13(4), 497519. doi:10.1207/s15328007sem1304_1 Crossref
MacCallum R. C., Austin J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51 (1), 201226. doi:10.1146/annurev.psych.51.1.201 Crossref, Medline
Marsh H. W., Wen Z., Hau K.-T. (2006). Structural equation models of latent interaction and quadratic effects. In Hancock G. R., Muller R. O. (Eds), Structural equation modeling: A second course (pp. 225265). New York, NY: Information Age Publishing.
Marsh H. W., Wen Z., Hau K.-T., Little T. D., Bovaird J. A., Widaman K. F. (2007). Unconstrained structural equation models of latent interactions: Contrasting residual- and mean-centered approaches. Structural Equation Modeling, 14 (4), 570580. doi:10.1080/10705510701303921 Crossref
McArdle J. J. (2012). Foundational issues in the contemporary modeling of longitudinal trajectories. In Laursen B., Little T., Card A. (Eds.), Handbook of Developmental Research Methods (pp. 385410). New York, NY: Guilford Publications.
Muthén B. (2012, September 20). Latent variable interactions. Retrieved from http://www.statmodel.com/download/LV%20Interaction.pdf
Muthén L., Muthén B. (1998–2012). Mplus User’s Guide, 6th Edition. Los Angeles, CA: Muthén & Muthén.
Ping R. A.Jr (1996). Latent variable interaction and quadratic effect estimation: A two-step technique using structural equation analysis. Psychological Bulletin, 119 (1), 166175. doi:10.1037/0033-2909.119.1.166 Crossref
Satorra A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In Heijmans R. D. H., Pollock D. S. G., Satorra A. (eds.), Innovations in multivariate statistical analysis. A Festschrift for Heinz Neudecker (pp. 233247). London, UK: Kluwer Academic Publishers. Crossref
Satorra A., Bentler P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514. Crossref
Satorra A., Bentler P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75 (2), 243248. doi:10.1007/s11336-009-9135-y Crossref, Medline
Tomarken A. J., Waller N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1 (1), 3165. doi:10.1146/annurev.clinpsy.1.102803.144239 Crossref, Medline
Wolff J. C., Ollendick T. H. (2006). The comorbidity of conduct problems and depression in childhood and adolescence. Clinical Child and Family Psychology Review, 9 (3–4), 201220. doi:10.1007/s10567-006-0011-3 Crossref, Medline

Vol 39, Issue 1, 2015

Recommended Citation


Estimating and interpreting latent variable interactions

Julie Maslowsky1, Justin Jager2, Douglas Hemken3University of Texas at Austin, USAArizona State University, USAUniversity of Wisconsin, Madison, USA


International Journal of Behavioral Development

Vol 39, Issue 1, pp. 87 - 96

First published date: October-13-2014


If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click on download.

Format

Download article citation data for:
Julie Maslowsky, Justin Jager, and Douglas Hemken
International Journal of Behavioral Development 2014 39:1, 87-96

Request Permissions

View permissions information for this article

Share

Email