Abstract
Latent variables are common in psychological research. Research questions involving the interaction of two variables are likewise quite common. Methods for estimating and interpreting interactions between latent variables within a structural equation modeling framework have recently become available. The latent moderated structural equations (LMS) method is one that is built into Mplus software. The potential utility of this method is limited by the fact that the models do not produce traditional model fit indices, standardized coefficients, or effect sizes for the latent interaction, which renders model fitting and interpretation of the latent variable interaction difficult. This article compiles state-of-the-science techniques for assessing LMS model fit, obtaining standardized coefficients, and determining the size of the latent interaction effect in order to create a tutorial for new users of LMS models. The recommended sequence of model estimation and interpretation is demonstrated via a substantive example and a Monte Carlo simulation. Finally, extensions of this method are discussed, such as estimating quadratic effects of latent factors and interactions between latent slope and intercept factors, which hold significant potential for testing and advancing developmental theories.
| Aiken L. S., West S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: SAGE. | |
| Browne M. W., Cudeck R. (1992). Alternative ways of assessing model fit. Sociological Methods and Research, 21 (2), 230–258. Link | |
| Browne M. W., Cudeck R. (1993). Alternative ways of assessing model fit. In Bollen K. A., Long J. S. (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: SAGE. | |
| Busemeyer J. R., Jones L. E. (1983). Analysis of multiplicative combination rules when the causal variables are measured with error. Psychological Bulletin, 93 (3), 549–562. doi:10.1037/0033-2909.93.3.549 Crossref | |
| Cham H., West S. G., Ma Y., Aiken L. S. (2012). Estimating latent variable interactions with non-normal observed data: A comparison of four approaches. Multivariate Behavioral Research, 47 (6), 840–876. doi:10.1080/00273171.2012.732901 Crossref, Medline | |
| Dawson J. F. (2014). Moderation in management research: What, why, when and how. Journal of Business and Psychology, 29 (1), 1–19. doi :10.1007/s10869-013-9308-7 Crossref | |
| Gerhard C., Klein A., Schermelleh-Engel K., Moosbrugger H., Gade J., Brandt H. (in press). On the performance of likelihood-based difference tests in nonlinear structural equation models. Structural Equation Modeling. | |
| Gonzalez R., Griffin D. (2001). Testing parameters in structural equation modeling: Every “one” matters. Psychological Methods, 6 (3), 258–269. Crossref, Medline | |
| Johnston L. D., O’Malley P. M., Bachman J. G., Schulenberg J. E. (2013). Monitoring the Future national survey results on drug use, 1975-2012. Volume I: Secondary school students. Ann Arbor: Institute for Social Research, The University of Michigan. | |
| Kenny D. A., Judd C. M. (1984). Estimating nonlinear and interactive effects of latent variables. Psychological Bulletin, 96 (1), 201–210. Crossref | |
| Klein A., Moosbrugger H. (2000). Maximum likelihood estimation of latent interaction effects with the LMS method. Psychometrika, 65 (4), 457–474. doi:10.1007/BF02296338 Crossref | |
| Klein A. G., Muthén B. O. (2007). Quasi-maximum likelihood estimation of structural equation models with multiple interaction and quadratic effects. Multivariate Behavioral Research, 42 (4), 647–673. doi:10.1080/00273170701710205 Crossref | |
| Kovacs M., Paulauskas S., Gatsonis C., Richards C. (1988). Depressive disorders in childhood. III. A longitudinal study of comorbidity with and risk for conduct disorders. Journal of Affective Disorders, 15 (3), 205–217. doi:10.1016/0165-0327(88)90018-3 Crossref, Medline | |
| Little T. D. (2013). Longitudinal structural equation modeling. New York, NY: Guilford Press. | |
| Little T. D., Bovaird J. A., Widaman K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13(4), 497–519. doi:10.1207/s15328007sem1304_1 Crossref | |
| MacCallum R. C., Austin J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51 (1), 201–226. doi:10.1146/annurev.psych.51.1.201 Crossref, Medline | |
| Marsh H. W., Wen Z., Hau K.-T. (2006). Structural equation models of latent interaction and quadratic effects. In Hancock G. R., Muller R. O. (Eds), Structural equation modeling: A second course (pp. 225–265). New York, NY: Information Age Publishing. | |
| Marsh H. W., Wen Z., Hau K.-T., Little T. D., Bovaird J. A., Widaman K. F. (2007). Unconstrained structural equation models of latent interactions: Contrasting residual- and mean-centered approaches. Structural Equation Modeling, 14 (4), 570–580. doi:10.1080/10705510701303921 Crossref | |
| McArdle J. J. (2012). Foundational issues in the contemporary modeling of longitudinal trajectories. In Laursen B., Little T., Card A. (Eds.), Handbook of Developmental Research Methods (pp. 385–410). New York, NY: Guilford Publications. | |
| Muthén B. (2012, September 20). Latent variable interactions. Retrieved from http://www.statmodel.com/download/LV%20Interaction.pdf | |
| Muthén L., Muthén B. (1998–2012). Mplus User’s Guide, 6th Edition. Los Angeles, CA: Muthén & Muthén. | |
| Ping R. A.Jr (1996). Latent variable interaction and quadratic effect estimation: A two-step technique using structural equation analysis. Psychological Bulletin, 119 (1), 166–175. doi:10.1037/0033-2909.119.1.166 Crossref | |
| Satorra A. (2000). Scaled and adjusted restricted tests in multi-sample analysis of moment structures. In Heijmans R. D. H., Pollock D. S. G., Satorra A. (eds.), Innovations in multivariate statistical analysis. A Festschrift for Heinz Neudecker (pp. 233–247). London, UK: Kluwer Academic Publishers. Crossref | |
| Satorra A., Bentler P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507–514. Crossref | |
| Satorra A., Bentler P. M. (2010). Ensuring positiveness of the scaled difference chi-square test statistic. Psychometrika, 75 (2), 243–248. doi:10.1007/s11336-009-9135-y Crossref, Medline | |
| Tomarken A. J., Waller N. G. (2005). Structural equation modeling: Strengths, limitations, and misconceptions. Annual Review of Clinical Psychology, 1 (1), 31–65. doi:10.1146/annurev.clinpsy.1.102803.144239 Crossref, Medline | |
| Wolff J. C., Ollendick T. H. (2006). The comorbidity of conduct problems and depression in childhood and adolescence. Clinical Child and Family Psychology Review, 9 (3–4), 201–220. doi:10.1007/s10567-006-0011-3 Crossref, Medline |

