Many complex networks have a small-world topology characterized by dense local clustering or cliquishness of connections between neighboring nodes yet a short path length between any (distant) pair of nodes due to the existence of relatively few long-range connections. This is an attractive model for the organization of brain anatomical and functional networks because a small-world topology can support both segregated/specialized and distributed/integrated information processing. Moreover, small-world networks are economical, tending to minimize wiring costs while supporting high dynamical complexity. The authors introduce some of the key mathematical concepts in graph theory required for small-world analysis and review how these methods have been applied to quantification of cortical connectivity matrices derived from anatomical tract-tracing studies in the macaque monkey and the cat. The evolution of small-world networks is discussed in terms of a selection pressure to deliver cost-effective information-processing systems. The authors illustrate how these techniques and concepts are increasingly being applied to the analysis of human brain functional networks derived from electroencephalography/magnetoencephalography and fMRI experiments. Finally, the authors consider the relevance of small-world models for understanding the emergence of complex behaviors and the resilience of brain systems to pathological attack by disease or aberrant development. They conclude that small-world models provide a powerful and versatile approach to understanding the structure and function of human brain systems.

Achard S , Salvador R , Whitcher B , Suckling J , Bullmore E. 2006. A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26: 63-72. Google Scholar, Crossref, Medline
Albert R , Barabási A-L. 2000. Topology of evolving networks: local events and universality. Phys Rev Lett 85: 5234-5237. Google Scholar, Crossref, Medline
Albert R , Barabási A-L. 2002. Statistical mechanics of complex networks. Rev Mod Phys 74(1): 47-47. Google Scholar, Crossref
Allman JM. 1998. Evolving brains. New York: Scientific American. Google Scholar
Amaral LAN , Scala A , Barthelemy M , Stanley HE. 2000. Classes of small-world networks. Proc Natl Acad Sci U S A 97: 11149-11152. Google Scholar, Crossref, Medline
Atay FM , Biyikoglu T. 2005. Graph operations and synchronization of complex networks. Phys Rev E 72: 016217-016217. Google Scholar, Crossref
Atay FM , Biyikoglu T , Jost J. 2006. Synchronization of networks with prescribed degree distributions. IEEE Transactions on Circuits and Systems Part I: Regular Papers 53(1): 92-98. Google Scholar, Crossref
Barahona M , Pecora LM. 2002. Synchronization in small-world systems. Phys Rev Lett 89: 054101-054101. Google Scholar, Crossref
Bianconi G , Barabási A-L. 2001. Competition and multiscaling in evolving networks. Europhys Lett 54: 436-436. Google Scholar, Crossref
Boccaletti S , Latora V , Moreno Y , Chavez M , Hwang DU. 2006. Complex networks: structure and dynamics. Phys Rep 424: 175-308. Google Scholar, Crossref
Buchanan M. 2003. Small world: uncovering nature’s hidden networks: London: Orion. Google Scholar
Buzsáki G , Geisler C , Henze DA , Wang X-J. 2004. Interneuron diversity series: circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci 27: 186-193. Google Scholar, Crossref, Medline, ISI
Changizi MA. 2001. Principles underlying mammalian neocortical scaling. Biol Cybern 84: 207-215. Google Scholar, Crossref, Medline
Chklovskii DB. 2004. Synaptic connectivity and neuronal morphology: two sides of the same coin. Neuron 43: 609-617. Google Scholar, Medline
Chklovskii DB , Schikorski T , Stevens CF. 2002. Wiring optimization in cortical circuits. Neuron 34: 341-347. Google Scholar, Crossref, Medline, ISI
Costa LdF , Rodrigues FA , Travieso G , Boas PRV. 2006. Characterization of complex networks: a survey of measurements. Available from: http://arxiv.org/abs/cond-mat/0505185. Google Scholar
Costa LdF , Sporns O. 2005. Hierarchical features of large-scale cortical connectivity. Eur Phys JB 48: 567-573. Google Scholar, Crossref
Dorogovtsev SN , Mendes JFF. 2000. Evolution of networks with aging of sites. Phys Rev E 62: 1842-1842. Google Scholar, Crossref
Dorogovtsev SN , Mendes JFF , Samukhin AN. 2000. Structure of growing networks with preferential linking. Phys Rev Lett 85: 4633-4633. Google Scholar, Crossref, Medline
Eguíluz VM , Chialvo DR , Cecchi GA , Baliki M , Apkarian AV. 2005. Scale-free brain functional networks. Phys Rev Lett 94: 018102-018102. Google Scholar, Crossref
Felleman DJ , Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1: 1-47. Google Scholar, Crossref, Medline, ISI
Friston KJ. 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2: 56-78. Google Scholar, Crossref
Gao Z , Hu B , Hu G. 2001. Stochastic resonance of small-world networks. Phys Rev E 65: 016209-016209. Google Scholar, Crossref
Hilgetag CC , Burns GAPC , O’Neill MA , Scannell JW. 2000. Anatomical connectivity defines the organization of clusters of cortical areas in the macaque and the cat. Philos Trans R Soc Lond B Biol Sci 355: 91-91. Google Scholar, Crossref, Medline
Hilgetag CC , Grant S. 2000. Uniformity, specificity and variability of corticocortical connectivity. Philos Trans R Soc Lond B Biol Sci 355: 7-20. Google Scholar, Crossref, Medline
Hong H , Choi MY. 2002. Synchronization on small-world networks. Phys Rev E 65: 026139-026139. Google Scholar, Crossref
Humphries M , Gurney K , Prescott T. 2006. The brainstem reticular formation is a small-world, not scale-free, network. Philos Trans R Soc Lond B Biol Sci 273: 503-511. Google Scholar, Crossref
Jeong H , Neda Z , Barabási A-L. 2003. Measuring preferential attachment for evolving networks. Europhys Lett 61: 567-572. Google Scholar, Crossref
Kaiser M , Hilgetag CC. 2004a. Spatial growth of real-world networks. Phys Rev E 69: 036103-036103. Google Scholar, Crossref
Kaiser M , Hilgetag CC. 2004b. Modelling the development of cortical systems networks. Neurocomputing 2004: 297-302. Google Scholar, Crossref
Karbowski J. 2001. Optimal wiring principle and plateaus in the degree of separation for cortical neurons. Phys Rev Lett 86: 3674-3674. Google Scholar, Crossref, Medline
Koch C , Laurent G. 1999. Complexity and the nervous system. Science 284: 96-98. Google Scholar, Crossref, Medline, ISI
Kötter R , Sommer FT. 2000. Global relationship between structural connectivity propagation in the cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355: 127-134. Google Scholar, Crossref, Medline
Krapivsky PL , Redner S , Leyvraz F. 2000. Connectivity of growing random networks. Phys Rev Lett 85: 4629-4629. Google Scholar, Crossref, Medline
Lago-Fernandez LF , Huerta R , Corbacho F , Siguenza JA. 2000. Fast response and temporal coherent oscillations in small-world networks. Phys Rev Lett 84: 2758-2761. Google Scholar, Crossref, Medline
Latora V , Marchiori M. 2001. Efficient behavior of small-world networks. Phys Rev Lett 87: 198701-198701. Google Scholar, Crossref, Medline
Latora V , Marchiori M. 2003. Economic small-world behavior in weighted networks. Euro Phys JB 32: 249-263. Google Scholar, Crossref
Lu J , Yu K , Chen G , Cheng D. 2004. Characterizing the synchroniz-ability of small-world dynamical networks. IEEE Transactions on Circuits and Systems Part I: Regular Papers 51: 787-796. Google Scholar, Crossref
Masuda N , Aihara K. 2004. Global and local synchrony of coupled neurons in small-world networks. Biol Cybern 90: 302-309. Google Scholar, Crossref, Medline
Micheloyannis S , Pachou E , Stam CJ , Vourkas M , Erimaki S , Tsirka V. 2006. Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402: 273-277. Google Scholar, Crossref, Medline
Newman MEJ , Watts DJ. 1999. Scaling and percolation in the small-world network model. Phys Rev E 60: 7332-7332. Google Scholar, Crossref
Nishikawa T , Motter AE , Lai Y-C , Hoppensteadt FC. 2003. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys Rev Lett 91: 014101-014101. Google Scholar, Crossref
Ozik J , Hunt BR , Ott E. 2004. Growing networks with geographical attachment preference: emergence of small worlds. Phys Rev E 69: 026108-026108. Google Scholar, Crossref
Percha B , Dzakpasu R , Zochowski M , Parent J. 2005. Transition from local to global phase synchrony in small world neural network and its possible implications for epilepsy. Phys Rev E 72: 031909-031909. Google Scholar, Crossref
Ringo JL. 1991. Neuronal interconnection as a function of brain size. Brain Behav Evol 38: 1-6. Google Scholar, Crossref, Medline, ISI
Salvador R , Suckling J , Coleman MR , Pickard JD , Menon D , Bullmore E. 2005. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb Cortex 15: 1332-1342. Google Scholar, Crossref, Medline
Salvador R , Suckling J , Schwarzbauer C , Bullmore E. 2005. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360: 937-937. Google Scholar, Crossref, Medline
Scannell JW , Blakemore C , Young MP. 1995. Analysis of connectivity in the cat cerebral cortex. J Neurosci 15: 1463-1483. Google Scholar, Medline, ISI
Scannell JW , Burns GAPC , Hilgetag CC , O’Neil MA , Young MP. 1999. The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9: 277-299. Google Scholar, Crossref, Medline
Schank T , Wagner D. 2005. Approximating clustering coefficient and transitivity. Journal of Graph Algorithms and Applications 9: 265-275. Google Scholar, Crossref
Sik A , Penttonen M , Ylinen A , Buzsáki G. 1995. Hippocampal CA1 interneurons: an in vivo intracellular labeling study. J Neurosci 15: 6651-6665. Google Scholar, Medline, ISI
Simard D , Nadeau L , Kroger H. 2005. Fastest learning in small-world neural networks. Phys Lett A 336: 8-15. Google Scholar, Crossref
Sporns O , Chialvo DR , Kaiser M , Hilgetag CC. 2004. Organization, development and function of complex brain networks. Trends Cogn Sci 8: 418-425. Google Scholar, Crossref, Medline, ISI
Sporns O , Tononi G , Edelman GM. 2000. Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex 10: 127-141. Google Scholar, Crossref, Medline
Sporns O , Tononi G , Edelman GM. 2002. Theoretical neuroanatomy and the connectivity of the cerebral cortex. Behav Brain Res 135: 69-744. Google Scholar, Crossref, Medline
Sporns O , Zwi J. 2004. The small world of the cerebral cortex. Neuroinformatics 2: 145-162. Google Scholar, Crossref, Medline, ISI
Stam CJ. 2004. Functional connectivity patterns of human magnetoencephalographic recordings: a “small-world” network? Neurosci Lett 355: 25-28. Google Scholar, Crossref, Medline
Stam CJ , Jones BF , Nolte G , Breakspear M , Scheltens P. 2006. Small-world networks and functional connectivity in Alzheimer’s disease. Cereb Cortex. Epub ahead of print February 1, 2006. Google Scholar, Medline
Stepanyants A , Hof PR , Chklovskii DB. 2002. Geometry and structural plasticity of synaptic connectivity. Neuron 34: 275-288. Google Scholar, Crossref, Medline
Stephan K , Hilgetag CC , Burns GAPC , O’Neill MA , Young MP , Kötter R. 2000. Computational analysis of functional connectivity between areas of primate cerebral cortex. Philos Trans R Soc Lond B Biol Sci 355: 111-126. Google Scholar, Crossref, Medline
Vragovic I , Louis E , Diaz-Guilera A. 2005. Efficiency of informational transfer in regular and complex networks. Phys Rev E 71: 036122-036122. Google Scholar, Crossref
Watts DJ. 2004a. Six degrees: the new science of networks. New York: Vintage. Google Scholar
Watts DJ. 2004b. Small worlds: the dynamics of networks between order and randomness. Princeton (NJ): Princeton University Press. Google Scholar
Watts DJ , Strogatz SH. 1998. Collective dynamics of “small-world” networks. Nature 393: 440-442. Google Scholar, Crossref, Medline
Xulvi-Brunet R , Sokolov IM. 2002. Evolving networks with disadvantaged long-range connections. Phys Rev E 66: 026118-026118. Google Scholar, Crossref
Young MP. 1992. Objective analysis of the topological organization of the primate cortical visual system. Nature 358: 152-155. Google Scholar, Crossref, Medline, ISI
Young MP. 1993. The organization of neural systems in the primate cerebral cortex. Proc R Soc Lond B 252: 13-18. Google Scholar, Crossref, Medline
Young MP , Scannell JW , O’Neill MA , Hilgetag CC , Burns GAPC , Blakemore C. 1995. Non-metric multidimensional scaling in the analysis of neuroanatomical connection data and the organization of the primate cortical visual system. Philos Trans R Soc Lond B Biol Sci 348: 281-308. Google Scholar, Crossref, Medline
Zhigulin VP. 2005. Dynamical motifs: building blocks of complex dynamics in sparsely connected random networks. Phys Rev Lett 92: 238701-238701. Google Scholar, Crossref
View access options

My Account

You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Article

Your Access Options


Purchase

NRO-article-ppv for $40.00

Article available in: