The idea of two separate attention networks in the human brain for the voluntary deployment of attention and the reorientation to unexpected events, respectively, has inspired an enormous amount of research over the past years. In this review, we will reconcile these theoretical ideas on the dorsal and ventral attentional system with recent empirical findings from human neuroimaging experiments and studies in stroke patients. We will highlight how novel methods—such as the analysis of effective connectivity or the combination of neurostimulation with functional magnetic resonance imaging—have contributed to our understanding of the functionality and interaction of the two systems. We conclude that neither of the two networks controls attentional processes in isolation and that the flexible interaction between both systems enables the dynamic control of attention in relation to top-down goals and bottom-up sensory stimulation. We discuss which brain regions potentially govern this interaction according to current task demands.

Asplund, CL, Todd, JJ, Snyder, AP, Marois, R. 2010. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci 13(4):50712. Google Scholar, Crossref, Medline, ISI
Bastos, AM, Usrey, WM, Adams, RA, Mangun, GR, Fries, P, Friston, KJ. 2012. Canonical microcircuits for predictive coding. Neuron 76(4):695711. Google Scholar, Crossref, Medline, ISI
Blankenburg, F, Ruff, CC, Bestmann, S, Bjoertomt, O, Josephs, O, Deichmann, R, and others. 2010. Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 20(11):270211. Google Scholar, Crossref, Medline, ISI
Bressler, SL, Tang, W, Sylvester, CM, Shulman, GL, Corbetta, M. 2008. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):1005661. Google Scholar, Crossref, Medline, ISI
Cabeza, R, Ciaramelli, E, Moscovitch, M. 2012. Cognitive contributions of the ventral parietal cortex: an integrative theoretical account. Trends Cogn Sci 16(6):33852. Google Scholar, Crossref, Medline, ISI
Caspers, S, Geyer, S, Schleicher, A, Mohlberg, H, Amunts, K, Zilles, K. 2006. The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage 33(2):43048. Google Scholar, Crossref, Medline, ISI
Chang, CF, Hsu, TY, Tseng, P, Liang, WK, Tzeng, OJ, Hung, DL, and others. 2013. Right temporoparietal junction and attentional reorienting. Hum Brain Mapp 34(4):86977. Google Scholar, Crossref, Medline, ISI
Chica, AB, Bartolomeo, P, Valero-Cabré, A. 2011. Dorsal and ventral parietal contributions to spatial orienting in the human brain. J Neurosci 31(22):81439. Google Scholar, Crossref, Medline, ISI
Corbetta, M, Kincade, MJ, Lewis, C, Synder, AZ, Sapir, A. 2005. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8:160310. Google Scholar, Crossref, Medline, ISI
Corbetta, M, Patel, G, Shulman, GL. 2008. The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):30624. Google Scholar, Crossref, Medline, ISI
Corbetta, M, Shulman, GL. 2002. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:20115. Google Scholar, Crossref, Medline, ISI
Corbetta, M, Shulman, GL. 2011. Spatial neglect and attention networks. Annu Rev Neurosci 34:56999. Google Scholar, Crossref, Medline, ISI
DiQuattro, NE, Geng, JJ. 2011. Contextual knowledge configures attentional control networks. J Neurosci 31(49):1802635. Google Scholar, Crossref, Medline, ISI
Doricchi, F, Macci, E, Silvetti, M, Macaluso, E. 2010. Neural correlates of the spatial and expectancy components of endogenous and stimulus-driven orienting of attention in the Posner task. Cereb Cortex 20(7):157485. Google Scholar, Crossref, Medline, ISI
Downar, J, Crawley, AP, Mikulis, DJ, Davis, KD. 2000. A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci, 3:27783. Google Scholar, Crossref, Medline, ISI
Driver, J, Blankenburg, F, Bestmann, S, Ruff, CC. 2010. New approaches to the study of human brain networks underlying spatial attention and related processes. Exp Brain Res 206(2):15362. Google Scholar, Crossref, Medline, ISI
Fox, MD, Corbetta, M, Snyder, AZ, Vincent, JL, Raichle, ME. 2006. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. PNAS 103(26):1004651. Google Scholar, Crossref, Medline, ISI
Friedrich, FJ, Egly, R, Rafal, RD, Beck, D. 1998. Spatial attention deficits in humans: a comparison of superior parietal and temporal-parietal junction lesions. Neuropsychology 12(2):193207. Google Scholar, Crossref, Medline, ISI
Friston, KJ, Harrison, L, Penny, W. 2003. Dynamic causal modelling. NeuroImage 19(4):1273302. Google Scholar, Crossref, Medline, ISI
Geng, JJ, Mangun, GR. 2011. Right temporoparietal junction activation by a salient contextual cue facilitates target discrimination. NeuroImage 54(1):594601. Google Scholar, Crossref, Medline, ISI
Gillebert, CR, Mantini, D, Peeters, R, Dupont, P, Vandenberghe, R. 2013. Cytoarchitectonic mapping of attentional selection and reorienting in parietal cortex. NeuroImage 67:25772. Google Scholar, Crossref, Medline, ISI
Gillebert, CR, Mantini, D, Thijs, V, Sunaert, S, Dupont, P, Vandenberghe, R. 2011. Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain 134(6):1694709. Google Scholar, Crossref, Medline, ISI
Halligan, PW, Fink, GR, Marshall, JC, Vallar, G. 2003. Spatial cognition: evidence from visual neglect. Trends Cogn Sci 7(3):12533. Google Scholar, Crossref, Medline, ISI
He, BJ, Snyder, AZ, Vincent, JL, Epstein, A, Shulman, GL, Corbetta, M. 2007. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:90518. Google Scholar, Crossref, Medline, ISI
Jerde, TA, Merriam, EP, Riggall, AC, Hedges, JH, Curtis, CE. 2012. Prioritized maps of space in human frontoparietal cortex. J Neurosci 32(48):1738290. Google Scholar, Crossref, Medline, ISI
Kucyi, A, Moayedi, M, Weissman-Fogel, I, Hodaie, M, Davis, KD. 2012. Hemispheric asymmetry in white matter connectivity of the temporoparietal junction with the insula and prefrontal cortex. PLoS One 7(4):e35589. Google Scholar, Crossref, Medline, ISI
Libedinsky, C, Livingstone, M. 2011. Role of prefrontal cortex in conscious visual perception. J Neuroscience 31(1):649. Google Scholar, Crossref, Medline, ISI
Liu, T, Hospadaruk, L, Zhu, DC, Gardner, JL. 2011. Feature-specific attentional priority signals in human cortex. J Neurosci 31(12):448495. Google Scholar, Crossref, Medline, ISI
Macaluso, E . 2010. Orienting of spatial attention and the interplay between the senses. Cortex 46(3):28297. Google Scholar, Crossref, Medline, ISI
Macaluso, E, Driver, J. 2005. Multisensory spatial interactions: a window onto functional integration in the human brain. Trends Neurosci 28(5):26471. Google Scholar, Crossref, Medline, ISI
Mars, RB, Jbabdi, S, Sallet, J, O’Reilly, JX, Croxson, PL, Olivier, E, and others. 2011. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. J Neurosci 31(11):4087100. Google Scholar, Crossref, Medline, ISI
Mars, RB, Sallet, J, Schüffelgen, U, Jbabdi, S, Toni, I, Rushworth, MFS. 2012. Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks. Cereb Cortex 22(8):1894903. Google Scholar, Crossref, Medline, ISI
Moore, T, Armstrong, KM. 2003. Selective gating of visual signals by microstimulation of frontal cortex. Nature 421(6921):37073. Google Scholar, Crossref, Medline, ISI
Mort, DJ, Malhorta, P, Mannan, SK, Rorden, C, Pambakian, A, Kennard, C, and others. 2003. The anatomy of visual neglect. Brain 126:198697. Google Scholar, Crossref, Medline, ISI
Posner, MI . 1980. Orienting of attention. Q J Exp Psychol 32:325. Google Scholar, Crossref, Medline
Ptak, R . 2012. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist 18(5):50215. Google Scholar, SAGE Journals, ISI
Roebroeck, A, Formisano, E, Goebel, R. 2005. Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25(1):23042. Google Scholar, Crossref, Medline, ISI
Ruff, CC, Bestmann, S, Blankenburg, F, Bjoertomt, O, Josephs, O, Weiskopf, N, and others. 2008. Distinct causal influences of parietal versus frontal areas on human visual cortex: evidence from concurrent TMS-fMRI. Cereb Cortex 18(4):81727. Google Scholar, Crossref, Medline, ISI
Ruff, CC, Blankenburg, F, Bjoertomt, O, Bestmann, S, Freeman, E, Haynes, JD, and others. 2006. Concurrent TMS-fMRI and psychophysics reveal frontal influences on human retinotopic visual cortex Curr Biol 16(15):147988. Google Scholar, Crossref, Medline, ISI
Ruff, CC, Blankenburg, F, Bjoertomt, O, Bestmann, S, Weiskopf, N, Driver, J. 2009. Hemispheric differences in frontal and parietal influences on human occipital cortex: direct confirmation with concurrent TMS-fMRI. J Cogn Neurosci 21(6):114661. Google Scholar, Crossref, Medline, ISI
Schenkluhn, B, Ruff, CC, Heinen, K, Chambers, CD. 2008. Parietal stimulation decouples spatial and feature-based attention. J Neurosci 28(44):1110610. Google Scholar, Crossref, Medline, ISI
Serences, JT, Boynton, GM. 2007. Feature-based attentional modulations in the absence of direct visual stimulation. Neuron 55(2):30112. Google Scholar, Crossref, Medline, ISI
Serences, JT, Shomstein, S, Leber, AB, Golay, X, Egeth, HE, Yantis, S. 2005. Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci 16:11422. Google Scholar, SAGE Journals, ISI
Shulman, GL, Astafiev, SV, McAvoy, MP, D’Avossa, G, Corbetta, M. 2007. Right TPJ deactivation during visual search: functional significance and support for a filter hypothesis. Cereb Cortex 17(11):262533. Google Scholar, Crossref, Medline, ISI
Shulman, GL, McAvoy, MP, Cowan, MC, Astafiev, SV, Tansy, AP, D’Avossa, G, and others. 2003. Quantitative analysis of attention and detection signals during visual search. J Neurophysiol 90(5):338497. Google Scholar, Crossref, Medline, ISI
Siegel, M, Donner, TH, Oostenveld, R, Fries, P, Engel, AK. 2008. Neuronal synchronization along the dorsal visual pathway reflects the focus of spatial attention. Neuron 60(4):70919. Google Scholar, Crossref, Medline, ISI
Silver, MA, Kastner, S. 2009. Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):48895. Google Scholar, Crossref, Medline, ISI
Simpson, GV, Weber, DL, Dale, CL, Pantazis, D, Bressler, SL, Leahy, RM, and others. 2011. Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. J Neurosci 31(39):138809. Google Scholar, Crossref, Medline, ISI
Sparing, R, Thimm, M, Hesse, MD, Küst, J, Karbe, H, Fink, GR. 2009. Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. Brain 132(11):301120. Google Scholar, Crossref, Medline, ISI
Sylvester, CM, Shulman, GL, Jack, AI, Corbetta, M. 2007. Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. J Neurosci 27(52):1442433. Google Scholar, Crossref, Medline, ISI
Thiebaut, de, Schotten, M, Dell’Acqua, F, Forkel, SJ, Simmons, A, Vergani, F, Murphy, DGM, and others. 2011. A lateralized brain network for visuospatial attention. Nat Neurosci 14(10):12456. Google Scholar, Crossref, Medline, ISI
Thiebaut, de, Schotten, M, Tomaiuolo, F, Aiello, M, Merola, S, Silvetti, M, Lecce, F, and others. 2012. Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb Cortex doi:10.1093/cercor/bhs351. Google Scholar, Crossref, ISI
Todd, JJ, Fougnie, D, Marois, R. 2005. Visual short-term memory load suppresses temporo-parietal junction activity and induces inattentional blindness. Psychol Sci 16:96572. Google Scholar, SAGE Journals, ISI
Umarova, RM, Saur, D, Kaller, CP, Vry, MS, Glauche, V, Mader, I, and others. 2011. Acute visual neglect and extinction: distinct functional state of the visuospatial attention system. Brain 134(11):331025. Google Scholar, Crossref, Medline, ISI
Umarova, RM, Saur, D, Schnell, S, Kaller, CP, Vry, MS, Glauche, V, and others. 2009. Structural connectivity for visuospatial attention: significance of ventral pathways. Cereb Cortex 20(1):1219. Google Scholar, Crossref, ISI
Vandenberghe, R, Gillebert, CR. 2009. Parcellation of parietal cortex: convergence between lesion-symptom mapping and mapping of the intact functioning brain. Behav Brain Res 199(2):17182. Google Scholar, Crossref, Medline, ISI
Vossel, S, Weidner, R, Driver, J, Friston, KJ, Fink, GR. 2012. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. J Neurosci 32(31):1063748. Google Scholar, Crossref, Medline, ISI
Vossel, S, Weidner, R, Fink, GR. 2011. Dynamic coding of events within the inferior frontal gyrus in a probabilistic selective attention task. J Cogn Neurosci 23(2):41424. Google Scholar, Crossref, Medline, ISI
Vossel, S, Weidner, R, Thiel, CM, Fink, GR. 2009. What is “odd” in Posner’s location-cueing paradigm? Neural responses to unexpected location and feature changes compared. J Cogn Neurosci 21(1):3041. Google Scholar, Crossref, Medline, ISI
Vuilleumier, P, Schwartz, S, Verdon, V, Maravita, A, Hutton, C, Husain, M, and others. 2008. Abnormal attentional modulation of retinotopic cortex in parietal patients with spatial neglect. Curr Biol 18(19):15259. Google Scholar, Crossref, Medline, ISI
Weidner, R, Krummenacher, J, Reimann, B, Müller, HJ, Fink, GR. 2009. Sources of top-down control in visual search. J Cogn Neurosci 21(11):210013. Google Scholar, Crossref, Medline, ISI
Wen, X, Yao, L, Liu, Y, Ding, M. 2012. Causal interactions in attention networks predict behavioral performance. J Neurosci 32(4):128492. Google Scholar, Crossref, Medline, ISI
View access options

My Account

You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Article

Your Access Options


Purchase

NRO-article-ppv for $40.00

Article available in: