Abstract
The overall function of sleep is hypothesized to provide “recovery” after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non–rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance (“recovery process”). In turn, periodic excursions into an activated brain state—REM sleep—appear to be ideally placed to perform “selection” of brain networks, which have benefited from the process of “recovery,” based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
| Abel, T, Havekes, R, Saletin, JM, Walker, MP. 2013. Sleep, plasticity and memory from molecules to whole-brain networks. Curr Biol 23(17):R774–88. Google Scholar, Crossref, Medline, ISI | |
| Achermann, P, Dijk, DJ, Brunner, DP, Borbely, AA. 1993. A model of human sleep homeostasis based on EEG slow-wave activity: quantitative comparison of data and simulations. Brain Res Bull 31(1–2):97–113. Google Scholar, Crossref, Medline, ISI | |
| Albrecht, D, Quaschling, U, Zippel, U, Davidowa, H. 1996. Effects of dopamine on neurons of the lateral geniculate nucleus: an iontophoretic study. Synapse 23(2):70–8. Google Scholar, Crossref, Medline, ISI | |
| Altimus, CM, Guler, AD, Villa, KL, McNeill, DS, Legates, TA, Hattar, S. 2008. Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci U S A 105(50):19998–20003. Google Scholar, Crossref, Medline, ISI | |
| Andrillon, T, Nir, Y, Staba, RJ, Ferrarelli, F, Cirelli, C, Tononi, G, and others. 2011. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci 31(49):17821–34. Google Scholar, Crossref, Medline, ISI | |
| Antal, M, Acuna-Goycolea, C, Pressler, RT, Blitz, DM, Regehr, WG. 2010. Cholinergic activation of M2 receptors leads to context-dependent modulation of feedforward inhibition in the visual thalamus. PLoS Biol 8(4):e1000348. Google Scholar, Crossref, Medline, ISI | |
| Astori, S, Wimmer, RD, Prosser, HM, Corti, C, Corsi, M, Liaudet, N, and others 2011. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci U S A 108(33):13823–8. Google Scholar, Crossref, Medline, ISI | |
| Baran, B, Pace-Schott, EF, Ericson, C, Spencer, RM. 2012. Processing of emotional reactivity and emotional memory over sleep. J Neurosci 32(3):1035–42. Google Scholar, Crossref, Medline, ISI | |
| Barbato, G, Wehr, TA. 1998. Homeostatic regulation of REM sleep in humans during extended sleep. Sleep 21(3):267–76. Google Scholar, Crossref, Medline, ISI | |
| Bartho, P, Freund, TF, Acsady, L. 2002. Selective GABAergic innervation of thalamic nuclei from zona incerta. Eur J Neurosci 16(6):999–1014. Google Scholar, Crossref, Medline, ISI | |
| Battaglia, FP, Sutherland, GR, McNaughton, BL. 2004. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11(6):697–704. Google Scholar, Crossref, Medline, ISI | |
| Baumann, CR, Khatami, R, Werth, E, Bassetti, CL. 2006. Hypocretin (orexin) deficiency predicts severe objective excessive daytime sleepiness in narcolepsy with cataplexy. J Neurol Neurosurg Psychiatry 77(3):402–4. Google Scholar, Crossref, Medline, ISI | |
| Beersma, DG, Dijk, DJ, Blok, CG, Everhardus, I. 1990. REM sleep deprivation during 5 hours leads to an immediate REM sleep rebound and to suppression of non-REM sleep intensity. Electroencephalogr Clin Neurophysiol 76(2):114–22. Google Scholar, Crossref, Medline | |
| Benca, RM . 1996. Sleep in psychiatric disorders. Neurol Clin 14(4):739–64. Google Scholar, Crossref, Medline, ISI | |
| Benington, JH, Heller, HC. 1994. Does the function of REM sleep concern non-REM sleep or waking? Prog Neurobiol 44(5):433–49. Google Scholar, Crossref, Medline, ISI | |
| Benington, JH, Heller, HC. 1999. Implications of sleep deprivation experiments for our understanding of sleep homeostasis. Sleep 22(8):1033–43. Google Scholar, Medline, ISI | |
| Benington, JH, Woudenberg, MC, Heller, HC. 1994. REM-sleep propensity accumulates during 2-h REM-sleep deprivation in the rest period in rats. Neurosci Lett 180(1):76–80. Google Scholar, Crossref, Medline, ISI | |
| Benington, JH, Woudenberg, MC, Heller, HC. 1995. Apamin, a selective SK potassium channel blocker, suppresses REM sleep without a compensatory rebound. Brain Res 692(1–2):86–92. Google Scholar, Crossref, Medline, ISI | |
| Blitz, DM, Regehr, WG. 2005. Timing and specificity of feed-forward inhibition within the LGN. Neuron 45(6):917–28. Google Scholar, Crossref, Medline, ISI | |
| Blumberg, MS . 2010. Beyond dreams: do sleep-related movements contribute to brain development? Front Neurol 1:140. Google Scholar, Medline | |
| Blumberg, MS, Coleman, CM, Gerth, AI, McMurray, B. 2013. Spatiotemporal structure of REM sleep twitching reveals developmental origins of motor synergies. Curr Biol 23(21):2011–9. Google Scholar, Crossref, Medline, ISI | |
| Boissard, R, Gervasoni, D, Schmidt, MH, Barbagli, B, Fort, P, Luppi, PH. 2002. The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16(10):1959–73. Google Scholar, Crossref, Medline, ISI | |
| Bokor, H, Frere, SG, Eyre, MD, Slezia, A, Ulbert, I, Luthi, A, and others. 2005. Selective GABAergic control of higher-order thalamic relays. Neuron 45(6):929–40. Google Scholar, Crossref, Medline, ISI | |
| Bonjean, M, Baker, T, Lemieux, M, Timofeev, I, Sejnowski, T, Bazhenov, M. 2011. Corticothalamic feedback controls sleep spindle duration in vivo. J Neurosci 31(25):9124–34. Google Scholar, Crossref, Medline, ISI | |
| Borbely, AA . 1982. A two process model of sleep regulation. Hum Neurobiol 1(3):195–204. Google Scholar, Medline | |
| Brown, RE, Basheer, R, McKenna, JT, Strecker, RE, McCarley, RW. 2012. Control of sleep and wakefulness. Physiol Rev 92(3):1087–187. Google Scholar, Crossref, Medline, ISI | |
| Buckelmuller, J, Landolt, HP, Stassen, HH, Achermann, P. 2006. Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138(1):351–6. Google Scholar, Crossref, Medline, ISI | |
| Burgess, CR, Peever, JH. 2013. A noradrenergic mechanism functions to couple motor behavior with arousal state. Curr Biol 23(18):1719–25. Google Scholar, Crossref, Medline, ISI | |
| Buzsáki, G . 2006. Rhythms of the brain. Oxford, England: Oxford University Press. Google Scholar, Crossref | |
| Buzsaki, G, Anastassiou, CA, Koch, C. 2012. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13(6):407–20. Google Scholar, Crossref, Medline, ISI | |
| Buzsaki, G, Logothetis, N, Singer, W. 2013. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron 80(3):751–64. Google Scholar, Crossref, Medline, ISI | |
| Callaway, CW, Lydic, R, Baghdoyan, HA, Hobson, JA. 1987. Pontogeniculooccipital waves: spontaneous visual system activity during rapid eye movement sleep. Cell Mol Neurobiol 7(2):105–49. Google Scholar, Crossref, Medline, ISI | |
| Cantero, JL, Atienza, M, Stickgold, R, Kahana, MJ, Madsen, JR, Kocsis, B. 2003. Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci 23(34):10897–903. Google Scholar, Crossref, Medline, ISI | |
| Carter, ME, Adamantidis, A, Ohtsu, H, Deisseroth, K, de Lecea, L. 2009. Sleep homeostasis modulates hypocretin-mediated sleep-to-wake transitions. J Neurosci 29(35):10939–49. Google Scholar, Crossref, Medline, ISI | |
| Chow, HM, Horovitz, SG, Carr, WS, Picchioni, D, Coddington, N, Fukunaga, M, and others. 2013. Rhythmic alternating patterns of brain activity distinguish rapid eye movement sleep from other states of consciousness. Proc Natl Acad Sci U S A 110(25):10300–5. Google Scholar, Crossref, Medline, ISI | |
| Churchland, PS . 2002. Brain-wise: studies in neurophilosophy. Cambridge, MA: MIT Press. Google Scholar | |
| Cirelli, C, Tononi, G. 2008. Is sleep essential? PLoS Biol 6(8):e216. Google Scholar, Crossref, Medline, ISI | |
| Clement, O, Sapin, E, Libourel, PA, Arthaud, S, Brischoux, F, Fort, P, and others. 2012. The lateral hypothalamic area controls paradoxical (REM) sleep by means of descending projections to brainstem GABAergic neurons. J Neurosci 32(47):16763–74. Google Scholar, Crossref, Medline, ISI | |
| Collerton, D, Perry, E, McKeith, I. 2005. Why people see things that are not there: a novel perception and attention deficit model for recurrent complex visual hallucinations. Behav Brain Sci 28(6):737–57. Google Scholar, Crossref, Medline, ISI | |
| Contreras, D, Curro Dossi, R, Steriade, M. 1993. Electrophysiological properties of cat reticular thalamic neurones in vivo. J Physiol 470:273–94. Google Scholar, Crossref, Medline, ISI | |
| Contreras, D, Destexhe, A, Sejnowski, TJ, Steriade, M. 1996. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274(5288):771–4. Google Scholar, Crossref, Medline, ISI | |
| Crick, F, Mitchison, G. 1983. The function of dream sleep. Nature 304(5922):111–4. Google Scholar, Crossref, Medline, ISI | |
| Crunelli, V, Hughes, SW. 2009. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13(1):9–17. Google Scholar, Crossref, Medline, ISI | |
| Daan, S, Beersma, DG, Borbely, AA. 1984. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 pt 2):R161–83. Google Scholar, Medline, ISI | |
| Dang-Vu, TT, Schabus, M, Desseilles, M, Sterpenich, V, Bonjean, M, Maquet, P. 2010. Functional neuroimaging insights into the physiology of human sleep. Sleep 33(12):1589–603. Google Scholar, Crossref, Medline, ISI | |
| Datta, S . 2010. Cellular and chemical neuroscience of mammalian sleep. Sleep Med 11(5):431–40. Google Scholar, Crossref, Medline, ISI | |
| Davies, WL, Hankins, MW, Foster, RG. 2010. Vertebrate ancient opsin and melanopsin: divergent irradiance detectors. Photochem Photobiol Sci 9(11):1444–57. Google Scholar, Crossref, Medline, ISI | |
| Daya, VG, Bentley, AJ. 2010. Perception of experimental pain is reduced after provoked waking from rapid eye movement sleep. J Sleep Res 19(2):317–22. Google Scholar, Crossref, Medline, ISI | |
| De Gennaro, L, Ferrara, M. 2003. Sleep spindles: an overview. Sleep Med Rev 7(5):423–40. Google Scholar, Crossref, Medline, ISI | |
| Deboer, T . 2013. Behavioral and electrophysiological correlates of sleep and sleep homeostasis. Curr Top Behav Neurosci Oct 19. [Epub ahead of print] Google Scholar, Crossref | |
| Delogu, A, Sellers, K, Zagoraiou, L, Bocianowska-Zbrog, A, Mandal, S, Guimera, J, and others. 2012. Subcortical visual shell nuclei targeted by ipRGCs develop from a Sox14+-GABAergic progenitor and require Sox14 to regulate daily activity rhythms. Neuron 75(4):648–62. Google Scholar, Crossref, Medline, ISI | |
| Dement, W . 1958. The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 10(2):291–6. Google Scholar, Crossref, Medline | |
| Destexhe, A, Contreras, D, Steriade, M. 1999. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19(11):4595–608. Google Scholar, Crossref, Medline, ISI | |
| Destexhe, A, Hughes, SW, Rudolph, M, Crunelli, V. 2007. Are corticothalamic “up” states fragments of wakefulness? Trends Neurosci 30(7):334–42. Google Scholar, Crossref, Medline, ISI | |
| Diekelmann, S, Born, J. 2010. The memory function of sleep. Nat Rev Neurosci 11(2):114–26. Google Scholar, Medline, ISI | |
| Dijk, DJ . 1995. EEG slow waves and sleep spindles: windows on the sleeping brain. Behav Brain Res 69(1–2):109–16. Google Scholar, Crossref, Medline, ISI | |
| Dijk, DJ, Czeisler, CA. 1995. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci 15(5 pt 1):3526–38. Google Scholar, Crossref, Medline, ISI | |
| El Helou, J, Belanger-Nelson, E, Freyburger, M, Dorsaz, S, Curie, T, La Spada, F, and others. 2013. Neuroligin-1 links neuronal activity to sleep-wake regulation. Proc Natl Acad Sci U S A 110(24):9974–9. Google Scholar, Crossref, Medline, ISI | |
| Endo, T, Roth, C, Landolt, HP, Werth, E, Aeschbach, D, Achermann, P, and others. 1998. Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am J Physiol 274(4 pt 2):R1186–94. Google Scholar, Medline, ISI | |
| Endo, T, Schwierin, B, Borbely, AA, Tobler, I. 1997. Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res 66(2–3):97–110. Google Scholar, Crossref, Medline, ISI | |
| Fisher, SP, Foster, RG, Peirson, SN. 2013. The circadian control of sleep. Handb Exp Pharmacol (217):157–83. Google Scholar, Crossref, Medline | |
| Fort, P, Bassetti, CL, Luppi, PH. 2009. Alternating vigilance states: new insights regarding neuronal networks and mechanisms. Eur J Neurosci 29(9):1741–53. Google Scholar, Crossref, Medline, ISI | |
| Franken, P . 2002. Long-term vs. short-term processes regulating REM sleep. J Sleep Res 11(1):17–28. Google Scholar, Crossref, Medline, ISI | |
| Franken, P, Chollet, D, Tafti, M. 2001. The homeostatic regulation of sleep need is under genetic control. J Neurosci 21(8):2610–21. Google Scholar, Crossref, Medline, ISI | |
| Franken, P, Dijk, DJ, Tobler, I, Borbely, AA. 1991. Sleep deprivation in rats: effects on EEG power spectra, vigilance states, and cortical temperature. Am J Physiol 261(1 pt 2):R198–208. Google Scholar | |
| Franken, P, Malafosse, A, Tafti, M. 1998. Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol 275(4 pt 2):R1127–37. Google Scholar, Medline, ISI | |
| Gervasoni, D, Darracq, L, Fort, P, Souliere, F, Chouvet, G, Luppi, PH. 1998. Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10(3):964–70. Google Scholar, Crossref, Medline, ISI | |
| Grosmark, AD, Mizuseki, K, Pastalkova, E, Diba, K, Buzsaki, G. 2012. REM sleep reorganizes hippocampal excitability. Neuron 75(6):1001–7. Google Scholar, Crossref, Medline, ISI | |
| Grush, R . 2004. The emulation theory of representation: motor control, imagery, and perception. Behav Brain Sci 27(3):377–96. Google Scholar, Crossref, Medline, ISI | |
| Gujar, N, McDonald, SA, Nishida, M, Walker, MP. 2011. A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb Cortex 21(1):115–23. Google Scholar, Crossref, Medline, ISI | |
| Hankins, MW, Peirson, SN, Foster, RG. 2008. Melanopsin: an exciting photopigment. Trends Neurosci 31(1):27–36. Google Scholar, Crossref, Medline, ISI | |
| Hassani, OK, Henny, P, Lee, MG, Jones, BE. 2010. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep. Eur J Neurosci 32(3):448–57. Google Scholar, Crossref, Medline, ISI | |
| Hassani, OK, Lee, MG, Jones, BE. 2009. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. Proc Natl Acad Sci U S A 106(7):2418–22. Google Scholar, Crossref, Medline, ISI | |
| Hatori, M, Le, H, Vollmers, C, Keding, SR, Tanaka, N, Buch, T, and others. 2008. Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS One 3(6):e2451. Google Scholar, Crossref, Medline, ISI | |
| Hattar, S, Kumar, M, Park, A, Tong, P, Tung, J, Yau, KW, and others. 2006. Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–49. Google Scholar, Crossref, Medline, ISI | |
| Hattar, S, Liao, HW, Takao, M, Berson, DM, Yau, KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–70. Google Scholar, Crossref, Medline, ISI | |
| Henley, K, Morrison, AR. 1974. A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol Exp (Wars) 34(2):215–32. Google Scholar, Medline, ISI | |
| Hobson, JA . 2009. REM sleep and dreaming: towards a theory of protoconsciousness. Nat Rev Neurosci 10(11):803–13. Google Scholar, Crossref, Medline, ISI | |
| Hobson, JA, McCarley, RW, Wyzinski, PW. 1975. Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189(4196):55–8. Google Scholar, Crossref, Medline, ISI | |
| Horne, J . 2013. Why REM sleep? Clues beyond the laboratory in a more challenging world. Biol Psychol 92(2):152–68. Google Scholar, Crossref, Medline, ISI | |
| Horne, JA . 2000. REM sleep—by default? Neurosci Biobehav Rev 24(8):777–97. Google Scholar, Crossref, Medline, ISI | |
| Huber, R, Deboer, T, Tobler, I. 2000. Effects of sleep deprivation on sleep and sleep EEG in three mouse strains: empirical data and simulations. Brain Res 857(1–2):8–19. Google Scholar, Crossref, Medline, ISI | |
| Jego, S, Glasgow, SD, Herrera, CG, Ekstrand, M, Reed, SJ, Boyce, R, and others. 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–43. Google Scholar, Crossref, Medline, ISI | |
| Jones, BE . 2004. Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol 142(4):379–96. Google Scholar, Medline, ISI | |
| Jouvet, M . 1965. Paradoxical sleep—a study of its nature and mechanisms. Prog Brain Res 18:20–62. Google Scholar, Crossref, Medline | |
| Kantor, S, Mochizuki, T, Janisiewicz, AM, Clark, E, Nishino, S, Scammell, TE. 2009. Orexin neurons are necessary for the circadian control of REM sleep. Sleep 32(9):1127–34. Google Scholar, Crossref, Medline, ISI | |
| Karashima, A, Katayama, N, Nakao, M. 2010. Enhancement of synchronization between hippocampal and amygdala theta waves associated with pontine wave density. J Neurophysiol 103(5):2318–25. Google Scholar, Crossref, Medline, ISI | |
| Karni, A, Tanne, D, Rubenstein, BS, Askenasy, JJ, Sagi, D. 1994. Dependence on REM sleep of overnight improvement of a perceptual skill. Science 265(5172):679–82. Google Scholar, Crossref, Medline, ISI | |
| Kilduff, TS, Cauli, B, Gerashchenko, D. 2011. Activation of cortical interneurons during sleep: an anatomical link to homeostatic sleep regulation? Trends Neurosci 34(1):10–9. Google Scholar, Crossref, Medline, ISI | |
| Kim, Y, Laposky, AD, Bergmann, BM, Turek, FW. 2007. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep. Proc Natl Acad Sci U S A 104(25):10697–702. Google Scholar, Crossref, Medline, ISI | |
| Kleitman, N . 1982. Basic rest-activity cycle—22 years later. Sleep 5(4):311–7. Google Scholar, Crossref, Medline, ISI | |
| Knoblauch, V, Krauchi, K, Renz, C, Wirz-Justice, A, Cajochen, C. 2002. Homeostatic control of slow-wave and spindle frequency activity during human sleep: effect of differential sleep pressure and brain topography. Cereb Cortex 12(10):1092–100. Google Scholar, Crossref, Medline, ISI | |
| Krueger, JM, Obal, F. 1993. A neuronal group theory of sleep function. J Sleep Res 2(2):63–69. Google Scholar, Crossref, Medline, ISI | |
| Krueger, JM, Rector, DM, Roy, S, Van Dongen, HP, Belenky, G, Panksepp, J. 2008. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9(12):910–9. Google Scholar, Crossref, Medline, ISI | |
| Krueger, JM, Tononi, G. 2011. Local use-dependent sleep; synthesis of the new paradigm. Curr Top Med Chem 11(19):2490–2. Google Scholar, Crossref, Medline, ISI | |
| Landolt, HP, Gillin, JC. 2002. Different effects of phenelzine treatment on EEG topography in waking and sleep in depressed patients. Neuropsychopharmacology 27(3):462–9. Google Scholar, Crossref, Medline, ISI | |
| Leemburg, S, Vyazovskiy, VV, Olcese, U, Bassetti, CL, Tononi, G, Cirelli, C. 2010. Sleep homeostasis in the rat is preserved during chronic sleep restriction. Proc Natl Acad Sci U S A 107(36):15939–44. Google Scholar, Crossref, Medline, ISI | |
| LeGates, TA, Altimus, CM, Wang, H, Lee, HK, Yang, S, Zhao, H, and others. 2012. Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491(7425):594–8. Google Scholar, Crossref, Medline, ISI | |
| Lu, J, Bjorkum, AA, Xu, M, Gaus, SE, Shiromani, PJ, Saper, CB. 2002. Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22(11):4568–76. Google Scholar, Crossref, Medline, ISI | |
| Lu, J, Sherman, D, Devor, M, Saper, CB. 2006. A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–94. Google Scholar, Crossref, Medline, ISI | |
| Luczak, A, Bartho, P, Marguet, SL, Buzsaki, G, Harris, KD. 2007. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci U S A 104(1):347–52. Google Scholar, Crossref, Medline, ISI | |
| Lupi, D, Oster, H, Thompson, S, Foster, RG. 2008. The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11(9):1068–73. Google Scholar, Crossref, Medline, ISI | |
| Luthi, A . 2013. Sleep spindles: where they come from, what they do. Neuroscientist Aug 27. [Epub ahead of print] Google Scholar, Medline, ISI | |
| Mackiewicz, M, Shockley, KR, Romer, MA, Galante, RJ, Zimmerman, JE, Naidoo, N, and others. 2007. Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31(3):441–57. Google Scholar, Crossref, Medline, ISI | |
| Mahowald, MW, Cramer Bornemann, MA, Schenck, CH. 2011. State dissociation, human behavior, and consciousness. Curr Top Med Chem 11(19):2392–402. Google Scholar, Crossref, Medline, ISI | |
| Maquet, P, Ruby, P, Maudoux, A, Albouy, G, Sterpenich, V, Dang-Vu, T, and others. 2005. Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog Brain Res 150:219–27. Google Scholar, Crossref, Medline, ISI | |
| Maret, S, Dorsaz, S, Gurcel, L, Pradervand, S, Petit, B, Pfister, C, and others. 2007. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci U S A 104(50):20090–5. Google Scholar, Crossref, Medline, ISI | |
| Massimini, M, Huber, R, Ferrarelli, F, Hill, S, Tononi, G. 2004. The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862–70. Google Scholar, Crossref, Medline, ISI | |
| McCarley, RW, Hobson, JA. 1975. Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189(4196):58–60. Google Scholar, Crossref, Medline, ISI | |
| Mignot, E, Taheri, S, Nishino, S. 2002. Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 5(suppl):1071–5. Google Scholar, Crossref, Medline, ISI | |
| Millstein, J, Winrow, CJ, Kasarskis, A, Owens, JR, Zhou, L, Summa, KC, and others. 2011. Identification of causal genes, networks, and transcriptional regulators of REM sleep and wake. Sleep 34(11):1469–77. Google Scholar, Crossref, Medline, ISI | |
| Mirmiran, M . 1995. The function of fetal/neonatal rapid eye movement sleep. Behav Brain Res 69(1–2):13–22. Google Scholar, Crossref, Medline, ISI | |
| Mirmiran, M, Van Someren, E. 1993. Symposium: normal and abnormal REM sleep regulation: the importance of REM sleep for brain maturation. J Sleep Res 2(4):188–92. Google Scholar | |
| Montagna, P, Lugaresi, E. 2002. Agrypnia excitata: a generalized overactivity syndrome and a useful concept in the neurophysiopathology of sleep. Clin Neurophysiol 113(4):552–60. Google Scholar, Crossref, Medline, ISI | |
| Morairty, SR, Dittrich, L, Pasumarthi, RK, Valladao, D, Heiss, JE, Gerashchenko, D, and others. 2013. A role for cortical nNOS/NK1 neurons in coupling homeostatic sleep drive to EEG slow wave activity. Proc Natl Acad Sci U S A 110(50):20272–7. Google Scholar, Crossref, Medline, ISI | |
| Morin, LP . 2013. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 243:4–20. Google Scholar, Crossref, Medline, ISI | |
| Morin, LP, Blanchard, JH. 1999. Forebrain connections of the hamster intergeniculate leaflet: comparison with those of ventral lateral geniculate nucleus and retina. Vis Neurosci 16(6):1037–54. Google Scholar, Crossref, Medline, ISI | |
| Morin, LP, Blanchard, JH. 2005. Descending projections of the hamster intergeniculate leaflet: relationship to the sleep/arousal and visuomotor systems. J Comp Neurol 487(2):204–16. Google Scholar, Crossref, Medline, ISI | |
| Mouret, J, Delorme, F, Jouvet, M. 1967. Lesions of the pontine tegmentum and sleep in rats. C R Seances Soc Biol Fil 161(7):1603–6. Google Scholar, Medline | |
| Munsch, T, Yanagawa, Y, Obata, K, Pape, HC. 2005. Dopaminergic control of local interneuron activity in the thalamus. Eur J Neurosci 21(1):290–4. Google Scholar, Crossref, Medline, ISI | |
| Nir, Y, Staba, RJ, Andrillon, T, Vyazovskiy, VV, Cirelli, C, Fried, I, and others. 2011. Regional slow waves and spindles in human sleep. Neuron 70(1):153–69. Google Scholar, Crossref, Medline, ISI | |
| Nishida, M, Pearsall, J, Buckner, RL, Walker, MP. 2009. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19(5):1158–66. Google Scholar, Crossref, Medline, ISI | |
| Ocampo-Garces, A, Vivaldi, EA. 2002. Short-term homeostasis of REM sleep assessed in an intermittent REM sleep deprivation protocol in the rat. J Sleep Res 11(1):81–9. Google Scholar, Crossref, Medline, ISI | |
| Olbrich, E, Achermann, P. 2005. Analysis of oscillatory patterns in the human sleep EEG using a novel detection algorithm. J Sleep Res 14(4):337–46. Google Scholar, Crossref, Medline, ISI | |
| Parmeggiani, PL . 2003. Thermoregulation and sleep. Front Biosci 8:S557–67. Google Scholar, Crossref, Medline, ISI | |
| Peirson, S, Foster, RG. 2006. Melanopsin: another way of signaling light. Neuron 49(3):331–9. Google Scholar, Crossref, Medline, ISI | |
| Perogamvros, L, Dang-Vu, TT, Desseilles, M, Schwartz, S. 2013. Sleep and dreaming are for important matters. Front Psychol 4:474. Google Scholar, Crossref, Medline, ISI | |
| Peterson, MJ, Benca, RM. 2006. Sleep in mood disorders. Psychiatr Clin North Am 29(4):1009–32. Google Scholar, Crossref, Medline, ISI | |
| Poe, GR, Walsh, CM, Bjorness, TE. 2010. Cognitive neuroscience of sleep. Prog Brain Res 185:1–19. Google Scholar, Crossref, Medline, ISI | |
| Rasch, B, Born, J. 2013. About sleep’s role in memory. Physiol Rev 93(2):681–766. Google Scholar, Crossref, Medline, ISI | |
| Rechtschaffen, A, Bergmann, BM, Gilliland, MA, Bauer, K. 1999. Effects of method, duration, and sleep stage on rebounds from sleep deprivation in the rat. Sleep 22(1):11–31. Google Scholar, Crossref, Medline, ISI | |
| Rechtschaffen, A, Wolpert, EA, Dement, WC, Mitchell, SA, Fisher, C. 1963. Nocturnal sleep of narcoleptics. Electroencephalogr Clin Neurophysiol 15:599–609. Google Scholar, Crossref, Medline | |
| Ribeiro, S, Nicolelis, MA. 2004. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11(6):686–96. Google Scholar, Crossref, Medline, ISI | |
| Riedner, BA, Hulse, BK, Murphy, MJ, Ferrarelli, F, Tononi, G. 2011. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res 193:201–18. Google Scholar, Crossref, Medline, ISI | |
| Riedner, BA, Vyazovskiy, VV, Huber, R, Massimini, M, Esser, S, Murphy, M, and others. 2007. Sleep homeostasis and cortical synchronization: III. A high-density EEG study of sleep slow waves in humans. Sleep 30(12):1643–57. Google Scholar, Crossref, Medline, ISI | |
| Roffwarg, HP, Muzio, JN, Dement, WC. 1966. Ontogenetic development of the human sleep-dream cycle. Science 152(3722):604–19. Google Scholar, Crossref, Medline, ISI | |
| Saper, CB, Fuller, PM, Pedersen, NP, Lu, J, Scammell, TE. 2010. Sleep state switching. Neuron 68(6):1023–42. Google Scholar, Crossref, Medline, ISI | |
| Saper, CB, Scammell, TE, Lu, J. 2005. Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–63. Google Scholar, Crossref, Medline, ISI | |
| Sapin, E, Lapray, D, Berod, A, Goutagny, R, Leger, L, Ravassard, P, and others. 2009. Localization of the brainstem GABAergic neurons controlling paradoxical (REM) sleep. PLoS One 4(1):e4272. Google Scholar, Crossref, Medline, ISI | |
| Sastre, JP, Buda, C, Kitahama, K, Jouvet, M. 1996. Importance of the ventrolateral region of the periaqueductal gray and adjacent tegmentum in the control of paradoxical sleep as studied by muscimol microinjections in the cat. Neuroscience 74(2):415–26. Google Scholar, Crossref, Medline, ISI | |
| Scharf, MT, Naidoo, N, Zimmerman, JE, Pack, AI. 2008. The energy hypothesis of sleep revisited. Prog Neurobiol 86(3):264–80. Google Scholar, Crossref, Medline, ISI | |
| Sejnowski, TJ, Destexhe, A. 2000. Why do we sleep? Brain Res 886(1–2):208–223. Google Scholar, Crossref, ISI | |
| Siegel, JM . 2005. Clues to the functions of mammalian sleep. Nature 437(7063):1264–71. Google Scholar, Crossref, Medline, ISI | |
| Siegel, JM . 2011. REM sleep: a biological and psychological paradox. Sleep Med Rev 15(3):139–42. Google Scholar, Crossref, Medline, ISI | |
| Singh, M, Drake, CL, Roth, T. 2006. The prevalence of multiple sleep-onset REM periods in a population-based sample. Sleep 29(7):890–5. Google Scholar, Crossref, Medline, ISI | |
| Sirota, A, Buzsaki, G. 2005. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat Syst 3(4):245–59. Google Scholar, Crossref, Medline | |
| Smith, C . 1985. Sleep states and learning: a review of the animal literature. Neurosci Biobehav Rev 9(2):157–68. Google Scholar, Crossref, Medline, ISI | |
| Steriade, M . 2006. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137(4):1087–106. Google Scholar, Crossref, Medline, ISI | |
| Steriade, M, Timofeev, I, Grenier, F. 2001. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85(5):1969–85. Google Scholar, Crossref, Medline, ISI | |
| Stickgold, R . 1998. Sleep: off-line memory reprocessing. Trends Cogn Sci 2(12):484–92. Google Scholar, Crossref, Medline, ISI | |
| Studholme, KM, Gompf, HS, Morin, LP. 2013. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep. Am J Physiol Regul Integr Comp Physiol 304(6):R459–71. Google Scholar, Crossref, Medline, ISI | |
| Szymusiak, R, McGinty, D. 2008. Hypothalamic regulation of sleep and arousal. Ann N Y Acad Sci 1129:275–86. Google Scholar, Crossref, Medline, ISI | |
| Tassi, P, Bonnefond, A, Engasser, O, Hoeft, A, Eschenlauer, R, Muzet, A. 2006. EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiol Behav 87(1):177–84. Google Scholar, Crossref, Medline, ISI | |
| Terenzi, MG, Zagon, A, Roberts, MH. 1995. Efferent connections from the anterior pretectal nucleus to the diencephalon and mesencephalon in the rat. Brain Res 701(1–2):183–91. Google Scholar, Crossref, Medline, ISI | |
| Terzaghi, M, Sartori, I, Tassi, L, Didato, G, Rustioni, V, LoRusso, G, and others. 2009. Evidence of dissociated arousal states during NREM parasomnia from an intracerebral neurophysiological study. Sleep 32(3):409–12. Google Scholar, Crossref, Medline, ISI | |
| Terzaghi, M, Sartori, I, Tassi, L, Rustioni, V, Proserpio, P, Lorusso, G, and others. 2012. Dissociated local arousal states underlying essential clinical features of non-rapid eye movement arousal parasomnia: an intracerebral stereo-electroencephalographic study. J Sleep Res 21(5):502–6. Google Scholar, Crossref, Medline, ISI | |
| Timofeev, I . 2013. Local origin of slow EEG waves during sleep. Zh Vyssh Nerv Deiat Im I P Pavlova 63(1):105–12. Google Scholar, Medline, ISI | |
| Tiriac, A, Uitermarkt, BD, Fanning, AS, Sokoloff, G, Blumberg, MS. 2012. Rapid whisker movements in sleeping newborn rats. Curr Biol 22(21):2075–80. Google Scholar, Crossref, Medline, ISI | |
| Tobler, I . 2005. Phylogeny of sleep regulation. In: Kryger, MH, Roth, T, Dement, WC, editors. Principles and practice of sleep medicine. Philadelphia, PA: W. B. Saunders. Google Scholar, Crossref | |
| Tononi, G, Cirelli, C. 2006. Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62. Google Scholar, Crossref, Medline, ISI | |
| Trachsel, L, Tobler, I, Achermann, P, Borbely, AA. 1991. Sleep continuity and the REM-nonREM cycle in the rat under baseline conditions and after sleep deprivation. Physiol Behav 49(3):575-80. Google Scholar, Crossref, Medline, ISI | |
| Tsai, JW, Hannibal, J, Hagiwara, G, Colas, D, Ruppert, E, Ruby, NF, and others. 2009. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/-) mice. PLoS Biol 7(6):e1000125. Google Scholar, Crossref, Medline, ISI | |
| Vanini, G, Torterolo, P, McGregor, R, Chase, MH, Morales, FR. 2007. GABAergic processes in the mesencephalic tegmentum modulate the occurrence of active (rapid eye movement) sleep in guinea pigs. Neuroscience 145(3):1157–67. Google Scholar, Crossref, Medline, ISI | |
| Vertes, RP, Eastman, KE. 2000. The case against memory consolidation in REM sleep. Behav Brain Sci 23(6):867–76. Google Scholar, Crossref, Medline, ISI | |
| Vidal, L, Blanchard, J, Morin, LP. 2005. Hypothalamic and zona incerta neurons expressing hypocretin, but not melanin concentrating hormone, project to the hamster intergeniculate leaflet. Neuroscience 134(3):1081–90. Google Scholar, Crossref, Medline, ISI | |
| Vrang, N, Mrosovsky, N, Mikkelsen, JD. 2003. Afferent projections to the hamster intergeniculate leaflet demonstrated by retrograde and anterograde tracing. Brain Res Bull 59(4):267–88. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, V, Achermann, P, Borbely, AA, Tobler, I. 2004a. Interhemispheric coherence of the sleep electroencephalogram in mice with congenital callosal dysgenesis. Neuroscience 124(2):481–8. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Achermann, P, Borbely, AA, Tobler, I. 2004b. The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice. Arch Ital Biol 142(4):511–23. Google Scholar, Medline, ISI | |
| Vyazovskiy, VV, Borbely, AA, Tobler, I. 2002. Interhemispheric sleep EEG asymmetry in the rat is enhanced by sleep deprivation. J Neurophysiol 88(5):2280–6. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Harris, KD. 2013. Sleep and the single neuron: the role of global slow oscillations in individual cell rest. Nat Rev Neurosci 14(6):443–51. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Olcese, U, Hanlon, EC, Nir, Y, Cirelli, C, Tononi, G. 2011. Local sleep in awake rats. Nature 472(7344):443–7. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Olcese, U, Lazimy, YM, Faraguna, U, Esser, SK, Williams, JC, and others. 2009. Cortical firing and sleep homeostasis. Neuron 63(6):865–78. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Riedner, BA, Cirelli, C, Tononi, G. 2007a. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat. Sleep 30(12):1631–42. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Ruijgrok, G, Deboer, T, Tobler, I. 2006. Running wheel accessibility affects the regional electroencephalogram during sleep in mice. Cereb Cortex 16(3):328–36. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Tobler, I. 2005. Regional differences in NREM sleep slow-wave activity in mice with congenital callosal dysgenesis. J Sleep Res 14(3):299–304. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Tobler, I. 2012. The temporal structure of behaviour and sleep homeostasis. PLoS One 7(12):e50677. Google Scholar, Crossref, Medline, ISI | |
| Vyazovskiy, VV, Tobler, I, Winsky-Sommerer, R. 2007b. Alteration of behavior in mice by muscimol is associated with regional electroencephalogram synchronization. Neuroscience 147(3):833–41. Google Scholar, Crossref, Medline, ISI | |
| Watts, A, Gritton, HJ, Sweigart, J, Poe, GR. 2012. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. J Neurosci 32(39):13411–20. Google Scholar, Crossref, Medline, ISI | |
| Werth, E, Achermann, P, Borbely, AA. 2002a. Selective REM sleep deprivation during daytime. II. Muscle atonia in non-REM sleep. Am J Physiol Regul Integr Comp Physiol 283(2):R527–32. Google Scholar, Crossref, Medline, ISI | |
| Werth, E, Cote, KA, Gallmann, E, Borbely, AA, Achermann, P. 2002b. Selective REM sleep deprivation during daytime I. Time course of interventions and recovery sleep. Am J Physiol Regul Integr Comp Physiol 283(2):R521–6. Google Scholar, Crossref, Medline, ISI | |
| Wisor, JP . 2012. A metabolic-transcriptional network links sleep and cellular energetics in the brain. Pflugers Arch 463(1):15–22. Google Scholar, Crossref, Medline, ISI | |
| Wulff, K, Gatti, S, Wettstein, JG, Foster, RG. 2010. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci 11(8):589–99. Google Scholar, Crossref, Medline, ISI | |
| Xi, MC, Morales, FR, Chase, MH. 1999. Evidence that wakefulness and REM sleep are controlled by a GABAergic pontine mechanism. J Neurophysiol 82(4):2015–9. Google Scholar, Crossref, Medline, ISI | |
| Zamboni, G, Perez, E, Amici, R, Jones, CA, Parmeggiani, PL. 1999. Control of REM sleep: an aspect of the regulation of physiological homeostasis. Arch Ital Biol 137(4):249-62. Google Scholar, Medline, ISI | |
| Zhao, Y, Kerscher, N, Eysel, U, Funke, K. 2002. D1 and D2 receptor-mediated dopaminergic modulation of visual responses in cat dorsal lateral geniculate nucleus. J Physiol 539(pt 1):223–38. Google Scholar, Crossref, Medline, ISI |


