Abstract
It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished scientists and six normative controls. Overall, there were significant differences (p < 0.001) between the comparison groups in both minicolumnar width (CW) and mean cell spacing (MCS). Although our scientists did not exhibit deficits in communication or interpersonal skills, the resultant minicolumnar phenotype bears similarity to that described for both autism and Asperger's syndrome. Computer modeling has shown that smaller columns account for discrimination among signals during information processing. A minicolumnar phenotype that provides for discrimination and/or focused attention may help explain the savant abilities observed in some autistic people and the intellectually gifted.
| Alan Mason Chesney Medical Archives (1999) Repository Guide to the Personal Papers Collections: The Adolf Meyer Collection. The Johns Hopkins Medical Institutions. Available at http://www.medicalarchives.jhmi.edu/sgml/meyera.html, 23 December 2004. Google Scholar | |
| Anderson, B. & Harvey,T. (1996) `Alterations in Cortical Thickness and Neuronal Density in the Frontal Cortex of Albert Einstein', Neuroscience Letters 210: 161—4. Google Scholar, Crossref, Medline | |
| Andreasen, N.C. (2005) The Creating Brain. New York : Dana. Google Scholar | |
| Baron-Cohen, S. & Bolton, P. (1993) Autism: The Facts. Oxford: Oxford University Press. Google Scholar | |
| Bentivoglio, M. (1998) `Cortical Structure and Mental Skills: Oskar Vogt and the Legacy of Lenin's Brain', Brain Research Bulletin 47: 291—6. Google Scholar, Crossref, Medline | |
| Betz, B.J. (1981) `Adolph Meyer: Youth and Young Manhood', American Journal of Social Psychiatry 1: 33—9. Google Scholar | |
| Brink, T.L. (1980) `Idiot Savant with Unusual Mechanical Ability: An Organic Explanation', American Journal of Psychiatry 137: 250—1. Google Scholar, Crossref, Medline | |
| Buxhoeveden, D. & Casanova, M.F. (2000) `Comparative Lateralization Patterns in the Language Area of Human, Chimpanzee, and Rhesus Monkey Brains ', Laterality 5: 315—30. Google Scholar, Crossref, Medline | |
| Buxhoeveden, D.P., Switala, A.E., Roy, E., Litaker, M. & Casanova, M.F. (2001) `Lateralization of Minicolumn Structure in Human Planum Temporale Is Absent in Nonhuman Primate Cortex' , Brain, Behavior and Evolution 57: 349—58. Google Scholar, Crossref, Medline | |
| Casanova, M.F. (2006) `Neuropathological and Genetic Findings in Autism: The Significance of a Putative Minicolumnopathy', The Neuroscientist 12 (5): 435—41. Google Scholar, Link | |
| Casanova, M.F. & Switala, A.E. (2005) `Minicolumnar Morphometry: Computerized Image Analysis ', in M.F. Casanova (ed.) Neocortical Modularity and the Cell Minicolumn, pp. 161—79. Hauppauge, NY: Nova Science. Google Scholar | |
| Casanova, M.F., Buxhoeveden, D.P. & Brown, C. (2002a) `Clinical and Macroscopic Correlates of Minicolumnar Pathology in Autism', Journal of Child Neurology 17: 692—5. Google Scholar, Link | |
| Casanova, M.F., Buxhoeveden, D., Cohen, M., Switala, A.E. & Roy, E. (2002b) `The Neuropathology of Dyslexia', Annals of Neurology 52: 108—10. Google Scholar, Medline | |
| Casanova, M.F., Buxhoeveden, D., Switala, A.E. & Roy, E. (2002c) `Minicolumnar Pathology in Autism', Neurology 58: 428—32. Google Scholar, Crossref, Medline | |
| Casanova, M.F., Buxhoeveden, D., Switala, A.E. & Roy, E. (2002d) `Asperger's Syndrome and Cortical Neuropathology', Journal of Child Neurology 17: 142—5. Google Scholar | |
| Casanova, M.F., Buxhoeveden, D., Switala, A.E. & Roy, E. (2002e) `Neuronal Density and Architecture (Gray Level Index) in the Brains of Autistic Patients', Journal of Child Neurology 17: 515—21. Google Scholar, Link | |
| Casanova, M.F., Buxhoeveden, D., Switala, A.E. & Roy, E. (2003a) `Rett Syndrome as a Minicolumnopathy', Clinical Neuropathology 22: 163—8. Google Scholar, Medline | |
| Casanova, M.F., Buxhoeveden, D. & Gomez, J. (2003b) `Disruption in the Inhibitory Architecture of the Cell Minicolumn: Implications for Autism', The NeuroScientist 9: 496—507. Google Scholar, Link | |
| Damasio, A.R. & Galaburda, A. (1985) `Norman Geschwind', Archives of Neurology 42: 500—4. Google Scholar, Crossref, Medline | |
| Favorov, O.V. & Diamond, M.E. (1990) `Demonstration of Discrete Place-Defined Columns — Segregates — in the Cat SI', Journal of Comparative Neurology 298: 97—112. Google Scholar, Crossref, Medline | |
| Favorov, O.V. & Kelley, D.G. (1994) `Minicolumnar Organization within Somatosensory Cortical Segregates. I: Development of Afferent Connections', Cerebral Cortex 4: 408—27. Google Scholar | |
| Galaburda, A.M. (1985) `Norman Geschwind 1926—1984', Neuropsychology 23: 297—304. Google Scholar, Crossref | |
| Geschwind, N. & Galaburda, A.M. (1986) Cerebral Lateralization: Biological Mechanisms, Associations, and Pathology. Cambridge, MA: MIT Press. Google Scholar | |
| Gustafsson, L. (1997) `Inadequate Cortical Feature Maps: A Neural Circuit Theory of Autism', Biological Psychiatry 42: 1138—47. Google Scholar, Crossref, Medline | |
| Hagner, M. (1999) `Prolegomena to a History of Radical Brains in the Nineteenth Century: Physiognomics, Phrenology, Brain Anatomy', Physis: Rivista Internazionale di Storia della Scienza 36: 321—38. Google Scholar, Medline | |
| Heaton, P. & Wallace, G.L. (2004) `Annotation: The Savant Syndrome', Journal of Child Psychology and Psychiatry 45: 899—911. Google Scholar, Crossref, Medline | |
| Hermelin, B. (2001) Bright Splinters of the Mind: A Personal Story of Research with Autistic Savants. London: Jessica Kingsley. Google Scholar | |
| Jamison, K.R. (1995) `Manic-Depressive Illness and Creativity', Scientific American 272 (2): 62—7. Google Scholar, Crossref, Medline | |
| Kemper, T.L. (1984a) `Paul Ivan Yakovlev, M.D. (1894—1983)', Journal of Neuropathology and Experimental Neurology 43: 290—2. Google Scholar | |
| Kemper, T. (1984b) `Paul Ivan Yakovlev: 1894—1983', Archives of Neurology 41: 536—40. Google Scholar, Crossref, Medline | |
| Loyez, M. (1910) `Coloration des fibres nerveuses par la méthode à l'hématoxyline au fer après inclusion à la celloidine', Comptes rendus hebdomadaires des séances et mémoires de la Société de biologie 69: 511—13. Google Scholar | |
| Mesulam, M. (1994) `Neurocognitive Networks and Selectively Distributed Processing', Revue Neurologique 150 (8—9): 564—9. Google Scholar, Medline | |
| Mesulam, M.M. (1998) `From Sensation to Cognition', Brain 121: 1013—52. Google Scholar, Crossref, Medline | |
| Miller, L.K. (1999) `The Savant Syndrome: Intellectual Impairment and Exceptional Skill', Psychological Bulletin 125: 31—46. Google Scholar, Crossref, Medline | |
| Mountcastle, V.B. (1997) `The Columnar Organization of the Neocortex', Brain 120: 701—22. Google Scholar, Crossref, Medline | |
| Mountcastle, V.B. (1998) Perceptual Neuroscience: The Cerebral Cortex. Cambridge, MA: Harvard University Press. Google Scholar | |
| Otsu, N. (1979) `A Threshold Selection Method from Grey-Level Histograms ', IEEE Transactions on Systems, Man, and Cybernetics 9: 377—93. Google Scholar, Crossref | |
| Pesenti, M., Zago, L., Crivello, F., Mellet, E., Samson, D., Duroux, B., Seron, X., Mazoyer, B. & Tzourio-Mazoyer, N. (2001) `Mental Calculation in a Prodigy Is Sustained by Right Prefrontal and Medial Temporal Areas', Nature Neuroscience 4: 103—7. Google Scholar, Crossref, Medline | |
| Rakic, P. & Kornack, D.R. (2001) `Neocortical Expansion and Elaboration during Primate Evolution: A View from Neuroembryology', in D. Falk & K.R. Gibson (eds) Evolutionary Anatomy of the Primate Cerebral Cortex, pp. 30—56. Cambridge: Cambridge University Press. Google Scholar | |
| Richter, J. (2000) `Zytoarchitektonik und Revolution: Lenins Gehirn als Raum und Objekt', Berichte zur Wissenschaftsgeschichte 23: 347—62. Google Scholar, Crossref, Medline | |
| Rimland, B. (1978) `Savant Capabilities of Autistic Children and Their Cognitive Implications', in G. Serban (ed.) Cognitive Defects in the Development of Mental Illness, pp. 43—65. New York: Brunner/Mazel. Google Scholar | |
| Saloviita, T., Ruusila, L. & Ruusila, U. (2000) `Incidence of Savant Syndrome in Finland', Perceptual and Motor Skills 91: 120—2. Google Scholar, Link | |
| Treffert, D.A. (1988) `The Idiot Savant: A Review of the Syndrome', American Journal of Psychiatry 145: 563—72. Google Scholar, Crossref, Medline | |
| Treffert, D.A. (2005) `The Savant Syndrome in Autistic Disorder', in M.F. Casanova (ed.) Recent Developments in Autism Research, Chapter 2. New York: Nova Science. Google Scholar | |
| Treffert, D.A. & Wallace, G.L. (2002) `Islands of Genius', Scientific American 286 (6): 76—85. Google Scholar, Crossref, Medline | |
| West, T.G. (1997) In the Mind's Eye. Amherst, NY: Prometheus. Google Scholar | |
| Wheelwright, S. & Baron-Cohen, S. (2001) `The Link between Autism and Skills such as Engineering, Maths, Physics and Computing: A Reply to Jarrold and Routh', Autism 5 (2): 223—7. Google Scholar, Medline | |
| Witelson, S.F., Kigar, D.L. & Harvey, T. (1999) `The Exceptional Brain of Albert Einstein', The Lancet 353: 2149—53. Erratum in The Lancet, 354: 258. Google Scholar, Crossref, Medline |

