Abstract
Evidence has been provided that high frequency oscillations within the gamma band reflect mechanisms of cortical integration. In the light of recently proposed pathophysiological models of schizophrenia, suggesting a disturbance of the functional connectivity within distributed neural networks, it has been hypothesized that abnormalities in the gamma band underlie perceptual and cognitive dysfunctions in patients with schizophrenia.
In the present study we investigated evoked and induced 40-Hz gamma power as well as frontoparietal and frontotem-poral event-related coherence in patients with deficit and nondeficit schizophrenia and in matched healthy controls. In patients, correlations between gamma oscillations and psychopathological dimensions were also investigated.
A reduction of both induced gamma power and event-related coherence was observed in patients with nondeficit schizophrenia, but not in those with deficit schizophrenia.
Our findings support the hypothesis that deficit and nondeficit schizophrenia represent separate disease entities, suggesting the presence of a poor integration of the neuronal activity within distributed neural network only in the subgroup of schizophrenic patients without primary and persistent negative symptoms.
Associations between an excess of gamma oscillations and psychopathological dimensions were observed, suggesting that abnormal thoughts, behaviors and perceptions might be related to the formation of inappropriate neural connections.
| 1. | Gray, CM, Singer, W. Stimulus-specific neuronal oscillations in cat visual cortex: A cortical functional unit. Soc Neurosci Abstr 1987; 13: 404–403. Google Scholar |
| 2. | Gray, CM, Konig, P, Engel, AK, Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989; 338: 334–337. Google Scholar, Crossref, Medline, ISI |
| 3. | Gray, CM, Engel, AK, Konig, P, Singer, W. Stimulus-dependent neuronal oscillations in cat visual cortex: Receptive field properties and feature dependence. Eur J Neurosci 1990; 2: 607–619. Google Scholar, Crossref, Medline, ISI |
| 4. | Joliot, M, Ribary, U, Llinas, R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 1994; 91: 11748–11751. Google Scholar, Crossref, Medline, ISI |
| 5. | Singer, W, Gray, CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995; 18: 555–586. Google Scholar, Crossref, Medline, ISI |
| 6. | Basar-Eroglu, C, Struber, D, Schurmann, M, Stadler, M, Basar, E. Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. Int J Psychophysiol 1996; 24: 101–112. Google Scholar, Crossref, Medline, ISI |
| 7. | Galambos, R . A comparison of certain gamma band 40 Hz brain rhythms in cat and man. In: Basar, E, Bullock, TH, (eds). Induced rhythms in the brain. Boston: Birkhäuser; 1992: 201–216. Google Scholar, Crossref |
| 8. | Tiitinen, H, Sinkkonen, J, Reinikainen, K, Alho, K, Lavikainen, J, Naatanen, R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 1993; 364: 59–60. Google Scholar, Crossref, Medline, ISI |
| 9. | Pantev, C . Evoked and induced gamma-band activity of the human cortex. Brain Topogr 1995; 7: 321–330. Google Scholar, Crossref, Medline |
| 10. | Phillips, WA, Singer, W. In search of common foundations for cortical computation. Behav Brain Sci 1997; 20: 657–683. Google Scholar, Crossref, Medline, ISI |
| 11. | Munk, MH, Neuenschwander, S. High-frequency oscillations (20 to 120 Hz) and their role in visual processing. J Clin Neurophysiol 2000; 17: 341–360. Google Scholar, Crossref, Medline, ISI |
| 12. | Lee, K-H, Williams, LM, Breakspear, M, Gordon, E. Synchronous gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 2003; 41: 57–78. Google Scholar, Crossref, Medline |
| 13. | Engel, AK, Konig, P, Schillen, TB. Why does the cortex oscillate? Curr Biol 1992; 6: 332–334. Google Scholar, Crossref |
| 14. | Körner, E, Gewaltig, MO, Körner, U, Richter, A, Rodemann, T. A model of computation in neocortical architecture. Neural Networks 1999; 12: 989–1005. Google Scholar, Crossref, Medline, ISI |
| 15. | Llinas, RR, Ribary, U. Rostrocaudal scan in human brain: A global characteristic of the 40 Hz response during sensory input. In: Basar, E, Bullock, TH, (eds). Induced rhythms in the brain. Boston: Birkhäuser; 1992: 147–154. Google Scholar, Crossref |
| 16. | Herrmann, CS, Demiralp, Y. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116: 2719–2733. Google Scholar, Crossref, Medline, ISI |
| 17. | Rodriguez, E, George, N, Lachaux, JP, Martinerie, J, Renault, B, Varela, FJ. Perception's shadow: Long-distance synchronization of human brain activity. Nature 1999; 397: 430–433. Google Scholar, Crossref, Medline, ISI |
| 18. | Konig, P, Engel, AK, Singer, W. Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc Natl Acad Sci USA 1995; 92: 290–294. Google Scholar, Crossref, Medline, ISI |
| 19. | Vaadia, E, Haalman, I, Abeles, M, Bergman, H, Prut, Y, Slovin, H. . Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 1995; 373: 515–518. Google Scholar, Crossref, Medline, ISI |
| 20. | Fries, P, Roelfsema, PR, Engel, AK, Konig, P, Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci USA 1997; 94: 12699–12704. Google Scholar, Crossref, Medline, ISI |
| 21. | Herculano-Houzel, S, Munk, MH, Neuenschwander, S, Singer, W. Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 1999; 10: 3992–4010. Google Scholar |
| 22. | Munk, MH, Nowak, LG, Nelson, JI, Bullier, J. Structural basis of cortical synchronization. II: Effects of cortical lesions. J Neurophysiol 1995; 74: 2401–2414. Google Scholar, Medline, ISI |
| 23. | Singer, W . Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 1993; 55: 349–374. Google Scholar, Crossref, Medline, ISI |
| 24. | Braff, DL . Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 1993; 19: 233–259. Google Scholar, Crossref, Medline, ISI |
| 25. | Friston, KJ, Frith, CD. Schizophrenia: A disconnection syndrome? Clin Neurosci 1995; 3: 89–97. Google Scholar, Medline |
| 26. | Friston, KJ . Theoretical neurobiology and schizophrenia. Br Med Bull 1996; 52: 644–655. Google Scholar, Crossref, Medline, ISI |
| 27. | Grunze, HC, Rainnie, DG, Hasselmo, ME, Barkai, E, Hearn, EF, McCarley, RW. NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 1996; 16: 2034–2043. Google Scholar, Crossref, Medline, ISI |
| 28. | Selemon, LD, Goldman-Rakic, PS. The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25. Google Scholar, Crossref, Medline, ISI |
| 29. | Benes, FM . Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 2000; 31: 251–269. Google Scholar, Crossref, Medline |
| 30. | Lewis, DA, Gonzalez-Burgos, G. Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309–317. Google Scholar, Crossref, Medline, ISI |
| 31. | Whittington, MA, Faulkner, HJ, Doheny, HC, Traub, RD. Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 2000; 86: 171–190. Google Scholar, Crossref, Medline, ISI |
| 32. | Green, MF, Nuechterlein, KH. Cortical oscillations and schizophrenia: Timing is of the essence. Arch Gen Psychiatry 1999; 56: 1007–1008. Google Scholar, Crossref, Medline |
| 33. | Clementz, BA, Blumenfeld, LD, Cobb, S. The gamma band response may account for poor P50 suppression in schizophrenia. NeuroReport 1997; 8: 3889–3893. Google Scholar, Crossref, Medline, ISI |
| 34. | Clementz, BA, Blumenfeld, LD. Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Exp Brain Res 2001; 139: 377–390. Google Scholar, Crossref, Medline, ISI |
| 35. | Kwon, JS, O'Donnell, BF, Wallenstein, GV, Greene, RW, Hirayasu, Y, Nestor, PG. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56: 1001–1005. Google Scholar, Crossref, Medline |
| 36. | Light, GA, Hsu, JL, Hsieh, MH, Meyer-Gomes, K, Sprock, J, Swerdlow, NR. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 2006; 60: 1231–1240. Google Scholar, Crossref, Medline, ISI |
| 37. | Hong, LE, Summerfelt, A, McMahon, R, Adami, H, Francis, G, Elliott, A. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 2004; 70: 293–302. Google Scholar, Crossref, Medline, ISI |
| 38. | Haig, AR, Gordon, E, De Pascalis, V, Meares, RA, Bahramali, H, Harris, A. Gamma activity in schizophrenia: Evidence of impaired network binding? Clin Neurophysiol 2000; 111: 1461–1468. Google Scholar, Crossref, Medline, ISI |
| 39. | Gallinat, J, Winterer, G, Herrmann, CS, Senkowski, D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 2004; 115: 1863–1874. Google Scholar, Crossref, Medline, ISI |
| 40. | Lee, KH, Williams, LM, Haig, A, Goldberg, E, Gordon, E. An integration of 40 Hz Gamma and phasic arousal: Novelty and routinization processing in schizophrenia. Clin Neurophysiol 2001; 112: 1499–1507. Google Scholar, Crossref, Medline, ISI |
| 41. | Green, MF, Mintz, J, Salveson, D, Nuechterlein, KH, Breitmeyer, B, Light, GA. Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biol Psychiatry 2003; 53: 1113–1119. Google Scholar, Crossref, Medline, ISI |
| 42. | Wynn, JK, Light, GA, Breitmeyer, B, Nuechterlein, KH, Green, MF. Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiatry 2005; 162: 2330–2336. Google Scholar, Crossref, Medline, ISI |
| 43. | Kissler, J, Muller, MM, Fehr, T, Rockstroh, B, Elbert, T. MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin Neurophysiol 2000; 111: 2079–2087. Google Scholar, Crossref, Medline, ISI |
| 44. | Symond, MB, Harris, AWF, Gordon, E, Williams, LM. “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity? Am J Psychiatry 2005; 162: 459–465. Google Scholar, Crossref, Medline, ISI |
| 45. | Spencer, KM, Nestor, PG, Niznikiewicz, MA, Salisbury, DF, Shenton, ME, McCarley, RW. Abnormal neural synchrony in schizophrenia. J Neurosci 2003; 23: 7407–7411. Google Scholar, Crossref, Medline, ISI |
| 46. | Spencer, KM, Nestor, PG, Perlmutter, R, Niznikiewicz, MA, Klump, MC, Frumin, M. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 2004; 101: 17288–17293. Google Scholar, Crossref, Medline, ISI |
| 47. | Ford, JM, Mathalon, DH. Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? Int J Psychophysiol 2005; 58: 179–189. Google Scholar, Crossref, Medline, ISI |
| 48. | Lee, K-H, Williams, LM, Haig, A, Gordon, E. 2Gamma (40 Hz) phase synchronicity” and symptom dimensions in schizophrenia. Cognit Neuropsychiatry 2003; 8: 57–71. Google Scholar, Crossref, Medline |
| 49. | Yeragani, VK, Cashmere, D, Miewald, J, Tancer, M, Keshavan, MS. Decreased coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in patients with schizophrenia: A preliminary report. Psychiatry Res 2006; 141: 53–60. Google Scholar, Crossref, Medline, ISI |
| 50. | Baldeweg, T, Spence, S, Hirsch, SR, Gruzelier, J. Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 1998; 352: 620–621. Google Scholar, Crossref, Medline, ISI |
| 51. | Gordon, E, Williams, LM, Haig, AR, Bahramali, H, Wright, J, Meares, R. Symptom profile and “gamma” processing in schizophrenia. Cognit Neuropsychiatry 2001; 6: 7–20. Google Scholar, Crossref |
| 52. | Buchanan, RW, Strauss, ME, Kirkpatrick, B, Holstein, C, Breier, A, Carpenter, WT: Neuropsychological impairments in deficit vs nondeficit forms of schizophrenia. Arch Gen Psychiatry 1994; 51: 804–811. Google Scholar, Crossref, Medline |
| 53. | Buchanan, RW, Strauss, ME, Breier, A, Kirkpatrick, B, Carpenter, WT. Attentional impairments in deficit and nondeficit forms of schizophrenia. Am J Psychiatry 1997; 154: 363–370. Google Scholar, Crossref, Medline, ISI |
| 54. | Arango, C, Kirkpatrick, B, Buchanan, RW. Neurological signs and the heterogeneity of schizophrenia. Am J Psychiatry 2000; 157: 560–565. Google Scholar, Crossref, Medline, ISI |
| 55. | Kirkpatrick, B, Buchanan, RW, Ross, DE, Carpenter, WT. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 2001; 58: 165–171. Google Scholar, Crossref, Medline |
| 56. | Galderisi, S, Maj, M, Mucci, A, Cassano, GB, Invernizzi, G, Rossi, A. Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: A multicenter study. Am J Psychiatry 2002; 159: 983–990. Google Scholar, Crossref, Medline, ISI |
| 57. | Seckinger, RA, Goudsmit, N, Coleman, E, Harkavy-Friedman, J, Yale, S, Rosenfield, PJ. Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophr Res 2004; 69: 55–65. Google Scholar, Crossref, Medline, ISI |
| 58. | Kirkpatrick, B, Buchanan, RW, McKenney, PD, Alphs, LD, Carpenter, WT. The Schedule for the Deficit Syndrome: An instrument for research in schizophrenia. Psychiatry Res 1989; 30: 119–124. Google Scholar, Crossref, Medline, ISI |
| 59. | De Lisi, LE, Razi, K, Stewart, J, Relja, M, Shields, G, Smith, AB. No evidence for a parent-of-origin effect detected in the pattern of inheritance of schizophrenia. Biol Psychiatry 2000; 48: 706–709. Google Scholar, Crossref, Medline, ISI |
| 60. | Oldfield, RC . The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychol 1971; 9: 97–113. Google Scholar, Crossref, Medline, ISI |
| 61. | Liddle, PF . Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol Med 1987; 17: 49–57. Google Scholar, Crossref, Medline, ISI |
| 62. | Liddle, PF, Barnes, TR. Syndromes of chronic schizophrenia. Br J Psychiatry 1990; 157: 558–561. Google Scholar, Crossref, Medline, ISI |
| 63. | Peralta, V, de Leon, J, Cuesta, MJ. Are there more than two syndromes in schizophrenia? A critique of the positive-negative dichotomy. Br J Psychiatry 1992; 161: 335–343. Google Scholar, Crossref, Medline, ISI |
| 64. | Galderisi, S, Mucci, A, Mignone, ML, Bucci, P, Maj, M. Hemispheric asymmetry and psychopathological dimensions in drug-free patients with schizophrenia. Int J Psychophysiol 1999; 34: 293–301. Google Scholar, Crossref, Medline, ISI |
| 65. | Van Dijk, JG, Caekebeke, JF, Jennekens-Schinkel, A, Zwinderman, AH. Background EEG reactivity in auditory event-related potentials. Electroencephalogr Clin Neurophysiol 1992; 83: 44–51. Google Scholar, Crossref, Medline |
| 66. | Haig, AR, De Pascalis, V, Gordon, E. Peak gamma latency correlated with reaction time in a conventional oddball paradigm. Clin Neurophysiol 1999; 110: 158–165. Google Scholar, Crossref, Medline, ISI |
| 67. | Haig, AR, Gordon, E, Wright, JJ, Meares, RA, Bahramali, H. Synchronous cortical gamma-band activity in task-relevant cognition. NeuroReport 2000; 11: 669–675. Google Scholar, Crossref, Medline, ISI |
| 68. | Ford, JM, Mathalon, DH, Whitfield, S, Faustman, WO, Roth, WT. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry 2002; 51: 485–492. Google Scholar, Crossref, Medline, ISI |
| 69. | Traub, RD, Whittington, MA, Buhl, EH, Jefferys, JG, Faulkner, HJ. On the mechanism of the gamma - beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation J Neurosci 1999; 19: 1088–1105. Google Scholar, Medline, ISI |
| 70. | Kopell, N, Ermentrout, GB, Whittington, MA, Traub, RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 2000; 97: 1867–1872. Google Scholar, Crossref, Medline, ISI |
| 71. | Klimesch, W, Doppelmayr, M, Hanslmayr, S. Chapter 10 upper alpha ERD and absolute power: Their meaning for memory performance. Prog Brain Res 2006; 159: 151–165. Google Scholar, Crossref, Medline, ISI |
| 72. | Klimesch, W, Sauseng, P, Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res Brain Res Rev 2006; 31: Epub ahead of print. Google Scholar |
| 73. | Duncan-Johnson, CC, Donchin, E. The P300 component of the event-related brain potential as an index of information processing. Biol Psychol 1982; 14: 1–52. Google Scholar, Crossref, Medline, ISI |
| 74. | Donchin, E, Coles, MG. Is the P300 component a manifestation of context updating? Behav Brain Sci 1988; 11: 357–374. Google Scholar, Crossref, ISI |
| 75. | Verleger, R . Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci 1988; 11: 343–356. Google Scholar, Crossref, ISI |
| 76. | Basar-Eroglu, C, Basar, ER. A compound P300–40 Hz response of the cat hippocampus. Int J Neurosci 1991; 60: 227–237. Google Scholar, Crossref, Medline, ISI |
| 77. | Andreasen, NC, Nopoulos, P, O'Leary, DS, Miller, DD, Wassink, T, Flaum, M. Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biol Psychiatry 1999; 46: 908–920. Google Scholar, Crossref, Medline, ISI |
| 78. | Peled, A . Multiple constraint organization in the brain: A theory for schizophrenia. Brain Res Bull 1999; 49: 245–250. Google Scholar, Crossref, Medline, ISI |
| 79. | Schutt, A, Basar, E. The effects of acetylcholine, dopamine and noradrenaline on the visceral ganglion of Helix pomatia. II: Stimulus evoked field potentials. Comp Biochem Physiol 1992; 102: 169–176. Google Scholar |
| 80. | Ma, J, Leung, LS. Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 2000; 111: 1–11. Google Scholar, Crossref, Medline, ISI |
| 81. | Ahveninen, J, Escera, C, Polo, MD, Grau, C, Jaaskelainen, IP. Acute and chronic effects of alcohol on preattentive auditory processing as reflected by mismatch negativity. Audiol Neurootol 2000; 5: 303–311. Google Scholar, Crossref, Medline, ISI |
| 82. | Dierks, T, Linden, DE, Jandl, M, Formisano, E, Goebel, R, Lanfermann, H. Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999; 22: 615–621. Google Scholar, Crossref, Medline, ISI |
| 83. | Hubl, D, Koenig, T, Strik, W, Federspiel, A, Kreis, R, Boesch, C. Pathways that make voices: White matter changes in auditory hallucinations. Arch Gen Psychiatry 2004; 61: 658–668. Google Scholar, Crossref, Medline |
| 84. | Norman, RM, Malla, AK, Morrison-Stewart, SL, Helmes, E, Williamson, PC, Thomas, J. Neuropsychological correlates of syndromes in schizophrenia. Br J Psychiatry 1997; 170: 134–139. Google Scholar, Crossref, Medline, ISI |
| 85. | Poole, JH, Ober, BA, Shenaut, GK, Vinogradov, S. Independent frontal-system deficits in schizophrenia: Cognitive, clinical, and adaptive implications. Psychiatry Res 1999; 85: 161–176. Google Scholar, Crossref, Medline, ISI |
| 86. | Whitford, TJ, Farrow, TF, Gomes, L, Brennan, J, Harris, AW, Williams, LM. Grey matter deficits and symptom profile in first episode schizophrenia. Psychiat Res 2005; 139: 229–238. Google Scholar, Crossref, Medline, ISI |

