Evidence has been provided that high frequency oscillations within the gamma band reflect mechanisms of cortical integration. In the light of recently proposed pathophysiological models of schizophrenia, suggesting a disturbance of the functional connectivity within distributed neural networks, it has been hypothesized that abnormalities in the gamma band underlie perceptual and cognitive dysfunctions in patients with schizophrenia.

In the present study we investigated evoked and induced 40-Hz gamma power as well as frontoparietal and frontotem-poral event-related coherence in patients with deficit and nondeficit schizophrenia and in matched healthy controls. In patients, correlations between gamma oscillations and psychopathological dimensions were also investigated.

A reduction of both induced gamma power and event-related coherence was observed in patients with nondeficit schizophrenia, but not in those with deficit schizophrenia.

Our findings support the hypothesis that deficit and nondeficit schizophrenia represent separate disease entities, suggesting the presence of a poor integration of the neuronal activity within distributed neural network only in the subgroup of schizophrenic patients without primary and persistent negative symptoms.

Associations between an excess of gamma oscillations and psychopathological dimensions were observed, suggesting that abnormal thoughts, behaviors and perceptions might be related to the formation of inappropriate neural connections.

1. Gray, CM, Singer, W. Stimulus-specific neuronal oscillations in cat visual cortex: A cortical functional unit. Soc Neurosci Abstr 1987; 13: 404403. Google Scholar
2. Gray, CM, Konig, P, Engel, AK, Singer, W. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 1989; 338: 334337. Google Scholar, Crossref, Medline, ISI
3. Gray, CM, Engel, AK, Konig, P, Singer, W. Stimulus-dependent neuronal oscillations in cat visual cortex: Receptive field properties and feature dependence. Eur J Neurosci 1990; 2: 607619. Google Scholar, Crossref, Medline, ISI
4. Joliot, M, Ribary, U, Llinas, R. Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 1994; 91: 1174811751. Google Scholar, Crossref, Medline, ISI
5. Singer, W, Gray, CM. Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 1995; 18: 555586. Google Scholar, Crossref, Medline, ISI
6. Basar-Eroglu, C, Struber, D, Schurmann, M, Stadler, M, Basar, E. Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. Int J Psychophysiol 1996; 24: 101112. Google Scholar, Crossref, Medline, ISI
7. Galambos, R . A comparison of certain gamma band 40 Hz brain rhythms in cat and man. In: Basar, E, Bullock, TH, (eds). Induced rhythms in the brain. Boston: Birkhäuser; 1992: 201216. Google Scholar, Crossref
8. Tiitinen, H, Sinkkonen, J, Reinikainen, K, Alho, K, Lavikainen, J, Naatanen, R. Selective attention enhances the auditory 40-Hz transient response in humans. Nature 1993; 364: 5960. Google Scholar, Crossref, Medline, ISI
9. Pantev, C . Evoked and induced gamma-band activity of the human cortex. Brain Topogr 1995; 7: 321330. Google Scholar, Crossref, Medline
10. Phillips, WA, Singer, W. In search of common foundations for cortical computation. Behav Brain Sci 1997; 20: 657683. Google Scholar, Crossref, Medline, ISI
11. Munk, MH, Neuenschwander, S. High-frequency oscillations (20 to 120 Hz) and their role in visual processing. J Clin Neurophysiol 2000; 17: 341360. Google Scholar, Crossref, Medline, ISI
12. Lee, K-H, Williams, LM, Breakspear, M, Gordon, E. Synchronous gamma activity: A review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 2003; 41: 5778. Google Scholar, Crossref, Medline
13. Engel, AK, Konig, P, Schillen, TB. Why does the cortex oscillate? Curr Biol 1992; 6: 332334. Google Scholar, Crossref
14. Körner, E, Gewaltig, MO, Körner, U, Richter, A, Rodemann, T. A model of computation in neocortical architecture. Neural Networks 1999; 12: 9891005. Google Scholar, Crossref, Medline, ISI
15. Llinas, RR, Ribary, U. Rostrocaudal scan in human brain: A global characteristic of the 40 Hz response during sensory input. In: Basar, E, Bullock, TH, (eds). Induced rhythms in the brain. Boston: Birkhäuser; 1992: 147154. Google Scholar, Crossref
16. Herrmann, CS, Demiralp, Y. Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 2005; 116: 27192733. Google Scholar, Crossref, Medline, ISI
17. Rodriguez, E, George, N, Lachaux, JP, Martinerie, J, Renault, B, Varela, FJ. Perception's shadow: Long-distance synchronization of human brain activity. Nature 1999; 397: 430433. Google Scholar, Crossref, Medline, ISI
18. Konig, P, Engel, AK, Singer, W. Relation between oscillatory activity and long-range synchronization in cat visual cortex. Proc Natl Acad Sci USA 1995; 92: 290294. Google Scholar, Crossref, Medline, ISI
19. Vaadia, E, Haalman, I, Abeles, M, Bergman, H, Prut, Y, Slovin, H. . Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature 1995; 373: 515518. Google Scholar, Crossref, Medline, ISI
20. Fries, P, Roelfsema, PR, Engel, AK, Konig, P, Singer, W. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci USA 1997; 94: 1269912704. Google Scholar, Crossref, Medline, ISI
21. Herculano-Houzel, S, Munk, MH, Neuenschwander, S, Singer, W. Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 1999; 10: 39924010. Google Scholar
22. Munk, MH, Nowak, LG, Nelson, JI, Bullier, J. Structural basis of cortical synchronization. II: Effects of cortical lesions. J Neurophysiol 1995; 74: 24012414. Google Scholar, Medline, ISI
23. Singer, W . Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 1993; 55: 349374. Google Scholar, Crossref, Medline, ISI
24. Braff, DL . Information processing and attention dysfunctions in schizophrenia. Schizophr Bull 1993; 19: 233259. Google Scholar, Crossref, Medline, ISI
25. Friston, KJ, Frith, CD. Schizophrenia: A disconnection syndrome? Clin Neurosci 1995; 3: 8997. Google Scholar, Medline
26. Friston, KJ . Theoretical neurobiology and schizophrenia. Br Med Bull 1996; 52: 644655. Google Scholar, Crossref, Medline, ISI
27. Grunze, HC, Rainnie, DG, Hasselmo, ME, Barkai, E, Hearn, EF, McCarley, RW. NMDA-dependent modulation of CA1 local circuit inhibition. J Neurosci 1996; 16: 20342043. Google Scholar, Crossref, Medline, ISI
28. Selemon, LD, Goldman-Rakic, PS. The reduced neuropil hypothesis: A circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 1725. Google Scholar, Crossref, Medline, ISI
29. Benes, FM . Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 2000; 31: 251269. Google Scholar, Crossref, Medline
30. Lewis, DA, Gonzalez-Burgos, G. Intrinsic excitatory connections in the prefrontal cortex and the pathophysiology of schizophrenia. Brain Res Bull 2000; 52: 309317. Google Scholar, Crossref, Medline, ISI
31. Whittington, MA, Faulkner, HJ, Doheny, HC, Traub, RD. Neuronal fast oscillations as a target site for psychoactive drugs. Pharmacol Ther 2000; 86: 171190. Google Scholar, Crossref, Medline, ISI
32. Green, MF, Nuechterlein, KH. Cortical oscillations and schizophrenia: Timing is of the essence. Arch Gen Psychiatry 1999; 56: 10071008. Google Scholar, Crossref, Medline
33. Clementz, BA, Blumenfeld, LD, Cobb, S. The gamma band response may account for poor P50 suppression in schizophrenia. NeuroReport 1997; 8: 38893893. Google Scholar, Crossref, Medline, ISI
34. Clementz, BA, Blumenfeld, LD. Multichannel electroencephalographic assessment of auditory evoked response suppression in schizophrenia. Exp Brain Res 2001; 139: 377390. Google Scholar, Crossref, Medline, ISI
35. Kwon, JS, O'Donnell, BF, Wallenstein, GV, Greene, RW, Hirayasu, Y, Nestor, PG. Gamma frequency-range abnormalities to auditory stimulation in schizophrenia. Arch Gen Psychiatry 1999; 56: 10011005. Google Scholar, Crossref, Medline
36. Light, GA, Hsu, JL, Hsieh, MH, Meyer-Gomes, K, Sprock, J, Swerdlow, NR. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 2006; 60: 12311240. Google Scholar, Crossref, Medline, ISI
37. Hong, LE, Summerfelt, A, McMahon, R, Adami, H, Francis, G, Elliott, A. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res 2004; 70: 293302. Google Scholar, Crossref, Medline, ISI
38. Haig, AR, Gordon, E, De Pascalis, V, Meares, RA, Bahramali, H, Harris, A. Gamma activity in schizophrenia: Evidence of impaired network binding? Clin Neurophysiol 2000; 111: 14611468. Google Scholar, Crossref, Medline, ISI
39. Gallinat, J, Winterer, G, Herrmann, CS, Senkowski, D. Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 2004; 115: 18631874. Google Scholar, Crossref, Medline, ISI
40. Lee, KH, Williams, LM, Haig, A, Goldberg, E, Gordon, E. An integration of 40 Hz Gamma and phasic arousal: Novelty and routinization processing in schizophrenia. Clin Neurophysiol 2001; 112: 14991507. Google Scholar, Crossref, Medline, ISI
41. Green, MF, Mintz, J, Salveson, D, Nuechterlein, KH, Breitmeyer, B, Light, GA. Visual masking as a probe for abnormal gamma range activity in schizophrenia. Biol Psychiatry 2003; 53: 11131119. Google Scholar, Crossref, Medline, ISI
42. Wynn, JK, Light, GA, Breitmeyer, B, Nuechterlein, KH, Green, MF. Event-related gamma activity in schizophrenia patients during a visual backward-masking task. Am J Psychiatry 2005; 162: 23302336. Google Scholar, Crossref, Medline, ISI
43. Kissler, J, Muller, MM, Fehr, T, Rockstroh, B, Elbert, T. MEG gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin Neurophysiol 2000; 111: 20792087. Google Scholar, Crossref, Medline, ISI
44. Symond, MB, Harris, AWF, Gordon, E, Williams, LM. “Gamma synchrony” in first-episode schizophrenia: A disorder of temporal connectivity? Am J Psychiatry 2005; 162: 459465. Google Scholar, Crossref, Medline, ISI
45. Spencer, KM, Nestor, PG, Niznikiewicz, MA, Salisbury, DF, Shenton, ME, McCarley, RW. Abnormal neural synchrony in schizophrenia. J Neurosci 2003; 23: 74077411. Google Scholar, Crossref, Medline, ISI
46. Spencer, KM, Nestor, PG, Perlmutter, R, Niznikiewicz, MA, Klump, MC, Frumin, M. Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 2004; 101: 1728817293. Google Scholar, Crossref, Medline, ISI
47. Ford, JM, Mathalon, DH. Corollary discharge dysfunction in schizophrenia: Can it explain auditory hallucinations? Int J Psychophysiol 2005; 58: 179189. Google Scholar, Crossref, Medline, ISI
48. Lee, K-H, Williams, LM, Haig, A, Gordon, E. 2Gamma (40 Hz) phase synchronicity” and symptom dimensions in schizophrenia. Cognit Neuropsychiatry 2003; 8: 5771. Google Scholar, Crossref, Medline
49. Yeragani, VK, Cashmere, D, Miewald, J, Tancer, M, Keshavan, MS. Decreased coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in patients with schizophrenia: A preliminary report. Psychiatry Res 2006; 141: 5360. Google Scholar, Crossref, Medline, ISI
50. Baldeweg, T, Spence, S, Hirsch, SR, Gruzelier, J. Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 1998; 352: 620621. Google Scholar, Crossref, Medline, ISI
51. Gordon, E, Williams, LM, Haig, AR, Bahramali, H, Wright, J, Meares, R. Symptom profile and “gamma” processing in schizophrenia. Cognit Neuropsychiatry 2001; 6: 720. Google Scholar, Crossref
52. Buchanan, RW, Strauss, ME, Kirkpatrick, B, Holstein, C, Breier, A, Carpenter, WT: Neuropsychological impairments in deficit vs nondeficit forms of schizophrenia. Arch Gen Psychiatry 1994; 51: 804811. Google Scholar, Crossref, Medline
53. Buchanan, RW, Strauss, ME, Breier, A, Kirkpatrick, B, Carpenter, WT. Attentional impairments in deficit and nondeficit forms of schizophrenia. Am J Psychiatry 1997; 154: 363370. Google Scholar, Crossref, Medline, ISI
54. Arango, C, Kirkpatrick, B, Buchanan, RW. Neurological signs and the heterogeneity of schizophrenia. Am J Psychiatry 2000; 157: 560565. Google Scholar, Crossref, Medline, ISI
55. Kirkpatrick, B, Buchanan, RW, Ross, DE, Carpenter, WT. A separate disease within the syndrome of schizophrenia. Arch Gen Psychiatry 2001; 58: 165171. Google Scholar, Crossref, Medline
56. Galderisi, S, Maj, M, Mucci, A, Cassano, GB, Invernizzi, G, Rossi, A. Historical, psychopathological, neurological, and neuropsychological aspects of deficit schizophrenia: A multicenter study. Am J Psychiatry 2002; 159: 983990. Google Scholar, Crossref, Medline, ISI
57. Seckinger, RA, Goudsmit, N, Coleman, E, Harkavy-Friedman, J, Yale, S, Rosenfield, PJ. Olfactory identification and WAIS-R performance in deficit and nondeficit schizophrenia. Schizophr Res 2004; 69: 5565. Google Scholar, Crossref, Medline, ISI
58. Kirkpatrick, B, Buchanan, RW, McKenney, PD, Alphs, LD, Carpenter, WT. The Schedule for the Deficit Syndrome: An instrument for research in schizophrenia. Psychiatry Res 1989; 30: 119124. Google Scholar, Crossref, Medline, ISI
59. De Lisi, LE, Razi, K, Stewart, J, Relja, M, Shields, G, Smith, AB. No evidence for a parent-of-origin effect detected in the pattern of inheritance of schizophrenia. Biol Psychiatry 2000; 48: 706709. Google Scholar, Crossref, Medline, ISI
60. Oldfield, RC . The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychol 1971; 9: 97113. Google Scholar, Crossref, Medline, ISI
61. Liddle, PF . Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychol Med 1987; 17: 4957. Google Scholar, Crossref, Medline, ISI
62. Liddle, PF, Barnes, TR. Syndromes of chronic schizophrenia. Br J Psychiatry 1990; 157: 558561. Google Scholar, Crossref, Medline, ISI
63. Peralta, V, de Leon, J, Cuesta, MJ. Are there more than two syndromes in schizophrenia? A critique of the positive-negative dichotomy. Br J Psychiatry 1992; 161: 335343. Google Scholar, Crossref, Medline, ISI
64. Galderisi, S, Mucci, A, Mignone, ML, Bucci, P, Maj, M. Hemispheric asymmetry and psychopathological dimensions in drug-free patients with schizophrenia. Int J Psychophysiol 1999; 34: 293301. Google Scholar, Crossref, Medline, ISI
65. Van Dijk, JG, Caekebeke, JF, Jennekens-Schinkel, A, Zwinderman, AH. Background EEG reactivity in auditory event-related potentials. Electroencephalogr Clin Neurophysiol 1992; 83: 4451. Google Scholar, Crossref, Medline
66. Haig, AR, De Pascalis, V, Gordon, E. Peak gamma latency correlated with reaction time in a conventional oddball paradigm. Clin Neurophysiol 1999; 110: 158165. Google Scholar, Crossref, Medline, ISI
67. Haig, AR, Gordon, E, Wright, JJ, Meares, RA, Bahramali, H. Synchronous cortical gamma-band activity in task-relevant cognition. NeuroReport 2000; 11: 669675. Google Scholar, Crossref, Medline, ISI
68. Ford, JM, Mathalon, DH, Whitfield, S, Faustman, WO, Roth, WT. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol Psychiatry 2002; 51: 485492. Google Scholar, Crossref, Medline, ISI
69. Traub, RD, Whittington, MA, Buhl, EH, Jefferys, JG, Faulkner, HJ. On the mechanism of the gamma - beta frequency shift in neuronal oscillations induced in rat hippocampal slices by tetanic stimulation J Neurosci 1999; 19: 10881105. Google Scholar, Medline, ISI
70. Kopell, N, Ermentrout, GB, Whittington, MA, Traub, RD. Gamma rhythms and beta rhythms have different synchronization properties. Proc Natl Acad Sci USA 2000; 97: 18671872. Google Scholar, Crossref, Medline, ISI
71. Klimesch, W, Doppelmayr, M, Hanslmayr, S. Chapter 10 upper alpha ERD and absolute power: Their meaning for memory performance. Prog Brain Res 2006; 159: 151165. Google Scholar, Crossref, Medline, ISI
72. Klimesch, W, Sauseng, P, Hanslmayr, S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res Brain Res Rev 2006; 31: Epub ahead of print. Google Scholar
73. Duncan-Johnson, CC, Donchin, E. The P300 component of the event-related brain potential as an index of information processing. Biol Psychol 1982; 14: 152. Google Scholar, Crossref, Medline, ISI
74. Donchin, E, Coles, MG. Is the P300 component a manifestation of context updating? Behav Brain Sci 1988; 11: 357374. Google Scholar, Crossref, ISI
75. Verleger, R . Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behav Brain Sci 1988; 11: 343356. Google Scholar, Crossref, ISI
76. Basar-Eroglu, C, Basar, ER. A compound P300–40 Hz response of the cat hippocampus. Int J Neurosci 1991; 60: 227237. Google Scholar, Crossref, Medline, ISI
77. Andreasen, NC, Nopoulos, P, O'Leary, DS, Miller, DD, Wassink, T, Flaum, M. Defining the phenotype of schizophrenia: Cognitive dysmetria and its neural mechanisms. Biol Psychiatry 1999; 46: 908920. Google Scholar, Crossref, Medline, ISI
78. Peled, A . Multiple constraint organization in the brain: A theory for schizophrenia. Brain Res Bull 1999; 49: 245250. Google Scholar, Crossref, Medline, ISI
79. Schutt, A, Basar, E. The effects of acetylcholine, dopamine and noradrenaline on the visceral ganglion of Helix pomatia. II: Stimulus evoked field potentials. Comp Biochem Physiol 1992; 102: 169176. Google Scholar
80. Ma, J, Leung, LS. Relation between hippocampal gamma waves and behavioral disturbances induced by phencyclidine and methamphetamine. Behav Brain Res 2000; 111: 111. Google Scholar, Crossref, Medline, ISI
81. Ahveninen, J, Escera, C, Polo, MD, Grau, C, Jaaskelainen, IP. Acute and chronic effects of alcohol on preattentive auditory processing as reflected by mismatch negativity. Audiol Neurootol 2000; 5: 303311. Google Scholar, Crossref, Medline, ISI
82. Dierks, T, Linden, DE, Jandl, M, Formisano, E, Goebel, R, Lanfermann, H. Activation of Heschl's gyrus during auditory hallucinations. Neuron 1999; 22: 615621. Google Scholar, Crossref, Medline, ISI
83. Hubl, D, Koenig, T, Strik, W, Federspiel, A, Kreis, R, Boesch, C. Pathways that make voices: White matter changes in auditory hallucinations. Arch Gen Psychiatry 2004; 61: 658668. Google Scholar, Crossref, Medline
84. Norman, RM, Malla, AK, Morrison-Stewart, SL, Helmes, E, Williamson, PC, Thomas, J. Neuropsychological correlates of syndromes in schizophrenia. Br J Psychiatry 1997; 170: 134139. Google Scholar, Crossref, Medline, ISI
85. Poole, JH, Ober, BA, Shenaut, GK, Vinogradov, S. Independent frontal-system deficits in schizophrenia: Cognitive, clinical, and adaptive implications. Psychiatry Res 1999; 85: 161176. Google Scholar, Crossref, Medline, ISI
86. Whitford, TJ, Farrow, TF, Gomes, L, Brennan, J, Harris, AW, Williams, LM. Grey matter deficits and symptom profile in first episode schizophrenia. Psychiat Res 2005; 139: 229238. Google Scholar, Crossref, Medline, ISI
View access options

My Account

You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Article

Your Access Options


Purchase

EEG-article-ppv for $40.00

Article available in: