Abstract
This article presents a new methodology for investigation of the organization of the overall and hemispheric brain network of patients with attention-deficit hyperactivity disorder (ADHD) using theoretical analysis of a weighted graph with the goal of discovering how the brain topology is affected in such patients. The synchronization measure used is the nonlinear fuzzy synchronization likelihood (FSL) developed by the authors recently. Recent evidence indicates a normal neocortex has a small-world (SW) network with a balance between local structure and global structure characteristics. Such a network results in optimal balance between segregation and integration which is essential for high synchronizabilty and fast information transmission in a complex network. The SW network is characterized by the coexistence of dense clustering of connections (C) and short path lengths (L) among the network units. The results of investigation of C show the local structure of functional left-hemisphere brain networks of ADHD diverges from that of non-ADHD which is recognizable in the delta electroencephalograph (EEG) sub-band. Also, the results of investigation for L show the global structure of functional left-hemisphere brain networks of ADHD diverges from that of non-ADHD which is observable in the delta EEG sub-band. It is concluded that the changes in left-hemisphere brain's structure of ADHD from that of the non-ADHD are so much that L and C can distinguish the ADHD brain from the non-ADHD brain in the delta EEG sub-band.
| 1. | Castellanos, FX, Gied, JN, Eckburg, P. Quantitative morphology of the caudate nucleus in attention deficit hyperactivity disorder. Am J Psychiatry. 1994;151(12):1791–1796. Google Scholar, Crossref, Medline, ISI |
| 2. | Krain, A, Castellanos, FX. Brain development and ADHD. Clin Psychol Rev. 2006;26(4):433–444. Google Scholar, Crossref, Medline, ISI |
| 3. | Filipek, PA, Semrud-Clikeman, M, Steingard, RJ, Renshaw, PF, Kennedy, DN, Biederman, J. Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997;48(3):589–601. Google Scholar, Crossref, Medline, ISI |
| 4. | Qiu, A, Crocetti, D, Adler, M. Basal ganglia volume and shape in children with attention deficit hyperactivity disorder. Am J Psychiatry, 2009;166(1):74–82. Google Scholar, Crossref, Medline, ISI |
| 5. | Castellanos, FX, Giedd, JN, Marsh, WL. Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53(7):607–616. Google Scholar, Crossref, Medline |
| 6. | Seidman, LJ, Valera, EM, Makris, N. Structural brain imaging of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005;57(11):1263–1272. Google Scholar, Crossref, Medline, ISI |
| 7. | Mackie, S, Shaw, P, Lenroot, R. Cerebellar development and clinical outcome in attention deficit hyperactivity disorder. Am J Psychiatry. 2007;164(4):647–655. Google Scholar, Crossref, Medline, ISI |
| 8. | Plessen, KJ, Bansal, R, Zhu, H. Hippocampus and amygdala morphology in attention-deficit/hyperactivity disorder. Arch Gen Psychiatry. 2006;63(7):795–807. Google Scholar, Crossref, Medline |
| 9. | Aylward, EH, Reiss, AL, Reader, MJ, Singer, HS, Brown, JE, Denckla, MB. Basal ganglia volumes in children with attention-deficit hyperactivity disorder. J Child Neurol. 1996;11(2):112–115. Google Scholar, SAGE Journals, ISI |
| 10. | Martins, ALD, Mascarenhas, NDA, Suazo CAT. Spatio-temporal resolution enhancement of vocal tract MRI sequences based on image registration,” Integrated Computer-Aided Eng. 2011;18(2):143–156. Google Scholar |
| 11. | Kramer, MA, Chang, FL, Cohen, ME, Hudson, D, Szeri, AJ. Synchronization measures of the scalp EEG can discriminate healthy from Alzheimers subjects. Int J Neural Syst. 2007;17(2):61–69. Google Scholar, Crossref, Medline, ISI |
| 12. | Osterhage, H, Mormann, F, Wagner, T, Lehnertz, K. Measuring the directionality of coupling: phase versus state space dynamics and application to EEG time series. Int J Neural Syst. 2007;17(3):139–148. Google Scholar, Crossref, Medline, ISI |
| 13. | Lee, H, Cichocki, A, Choi, S. Nonnegative matrix factorization for motor imagery EEG classification. Int J Neural Syst. 2007;17(4):305–317. Google Scholar, Crossref, Medline, ISI |
| 14. | Osorio, I, Frei, MG. Seizure abatement with single DC pulses: is phase resetting at play. Int J Neural Syst. 2009;19(3):149–156. Google Scholar, Crossref, Medline, ISI |
| 15. | Shoeb, A, Guttag, J, Pang, T, Schachter, S. Non-invasive computerized system for automatically initiating vagus nerve stimulation following patient-specific detection of seizures or epileptiform discharges. Int J Neural Syst. 2009;19(3):157–172. Google Scholar, Crossref, Medline, ISI |
| 16. | Good, LB, Sabesan, S, Marsh, ST, Tsakalis, KS, Iasemidis, LD. Control of synchronization of brain dynamics leads to control of epileptic seizures in rodents. Int J Neural Syst. 2009;19(3):173–196. Google Scholar, Crossref, Medline, ISI |
| 17. | Faust, O, Acharya, UR, Min, LC, Sputh, BHC. Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int J Neural Syst. 2010;20(2):159–176. Google Scholar, Crossref, Medline, ISI |
| 18. | Acharya, R, Chua, ECP, Chua, KC, Min, LC, Tamura, T. Analysis and automatic identification of sleep stages using higher order spectra. Int J Neural Syst. 2010;20(6):509–521. Google Scholar, Crossref, Medline, ISI |
| 19. | Acharya, UR, Vinitha Sree, SV, Suri, JS. Automatic detection of epileptic EEG signals using higher order cumulant features. Int J Neural Syst. 2011;21(5):403–414. Google Scholar, Crossref, Medline, ISI |
| 20. | Sherman, D, Zhang, N, Anderson, M. Detection of nonlinear interactions of EEG alpha waves in the brain by a new coherence measure and its application to epilepsy and anti-epileptic drug therapy. Int J Neural Syst. 2011;21(2):115–126. Google Scholar, Crossref, Medline, ISI |
| 21. | Hsu, WY . Continuous EEG signal analysis for asynchronous BCI application. Int J Neural Syst. 2011;21(4):335–350. Google Scholar, Crossref, Medline, ISI |
| 22. | Ahmadlou, A, Adeli, H, Adeli, A. Fractality and a wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Alzheimer Dis Assoc Disord. 2011;25(1):85–92. Google Scholar, Crossref, Medline, ISI |
| 23. | Sankari, Z., Adeli, H. Probabilistic neural networks for EEG-based diagnosis of Alzheimer’s disease using conventional and wavelet coherence. J Neurosci Methods. 2011;197(1):165–170. Google Scholar, Crossref, Medline, ISI |
| 24. | Sankari, Z, Adeli, H, Adeli, A. Intrahemispheric, interhemispheric and distal EEG coherence in Alzheimer’s disease. Clin Neurophysiol. 2011;122(5):897–906. Google Scholar, Crossref, Medline, ISI |
| 25. | Chakravarthy, N, Sabesan, S, Tsakalis, K, Iasemidis, L. Controling synchronization in a neural-level population model. Int J Neural Syst. 2007;17(2):123–138. Google Scholar, Crossref, Medline, ISI |
| 26. | Chiappalone, M, Vato, A, Berdondini, L, Koudelka, M, Martinoia, S. Network dynamics and synchronous activity in cultured cortical neurons. Int J Neural Syst. 2007;17(2):87–103. Google Scholar, Crossref, Medline, ISI |
| 27. | Postnov, DE, Ryazanova, LS, Zhirin, RA, Mosekilde, E, Sosnovtseva, OV. Noise controlled synchronization in potassium coupled neural networks. Int J Neural Syst. 2007;17(2):105–113. Google Scholar, Crossref, Medline, ISI |
| 28. | Chen, M, Jiang, CS, Wu, QX, Chen, WH. Synchronization in arrays of uncertain delay neural networks by decentralized feedback control. Int J Neural Syst. 2007;17(2):115–122. Google Scholar, Crossref, Medline, ISI |
| 29. | Montina, A, Mendoza, C, Arecchi, FT. Role of refractory period in homoclinic models of neural synchronization. Int J Neural Syst. 2007;17(2):79–86. Google Scholar, Crossref, Medline, ISI |
| 30. | Neefs, PJ, Steur, E, Nijmeijer, H. Network complexity and synchronous behaviour – an experimental approach. Int J Neural Syst. 2010;20(3):233–247. Google Scholar, Crossref, Medline, ISI |
| 31. | Besio, WG, Liu, X, Wang, L, Medvedev, AV, Koka, K. Transcutaneous focal electrical stimulation via concentric ring electrodes reduces synchrony induced by pentylenetetrazole in beta and gamma bands in rats. Int J Neural Syst. 2011;21(2):139–149. Google Scholar, Crossref, Medline, ISI |
| 32. | Lee, L, Harrison, LM, Mechelli, A. A report of the functional connectivity workshop, Dusseldorf 2002. Neuroimage. 2003;19(2):457–465. Google Scholar, Crossref, Medline, ISI |
| 33. | Jiang, X., Adeli, H. Fuzzy clustering approach for accurate embedding dimension identification in chaotic time series. Integrated Computer-Aided Eng. 2003;10(3):287–302. Google Scholar, ISI |
| 34. | Zou, W, Chi, Z, Lo, KC. Improvement of image classification using wavelet coefficients with structured-based neural network. Int J Neural Syst. 2008;18(3):195–205. Google Scholar, Crossref, Medline, ISI |
| 35. | Rizzi, M, D’Aloia, M, Castagnolo, B. Computer aided detection of microcalcifications in digital mammograms adopting a wavelet decomposition. Integrated Computer-Aided Eng. 2009;16(2):91–103. Google Scholar, ISI |
| 36. | He, Z, You, X, Zhou, L, Cheung, Y, Tang, YY. Writer identification using fractal dimension of wavelet subbands in gabor domain. Integrated Computer-Aided Eng. 2010;17(2):157–165. Google Scholar, ISI |
| 37. | Ghosh, B, Basu, B, O’Mahony, M. Random process model for traffic flow using a wavelet-bayesian hierarchical technique. Computer-Aided Civil and Infrastructure Eng. 2010;25(8):613–624. Google Scholar, Crossref, ISI |
| 38. | Ahmadlou, M, Adeli, H. Wavelet-synchronization methodology: a new approach for EEG-based diagnosis of ADHD. Clin EEG Neurosci. 2010;41(1):1–10. Google Scholar, SAGE Journals, ISI |
| 39. | Adeli, H, Zhou, Z, Dadmehr, N. Analysis of EEG records in an epileptic patient using wavelet transform. J Neurosci Methods. 2003;123(1):69–87. Google Scholar, Crossref, Medline, ISI |
| 40. | Adeli, H, Ghosh-Dastidar, S, Dadmehr, N. A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans Biomed Eng. 2007;54(2):205–211. Google Scholar, Crossref, Medline, ISI |
| 41. | Ghosh-Dastidar, S, Adeli, H, Dadmehr, N. Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Trans Biomed Eng. 2007;54(9):1545–1551. Google Scholar, Crossref, Medline, ISI |
| 42. | Ghosh-Dastidar, S, Adeli, H. Spiking neural networks. Int J Neural Syst. 2009;19(4):295–308. Google Scholar, Crossref, Medline, ISI |
| 43. | Ghosh-Dastidar, S, Adeli, H. A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection. Neural Netw. 2009;22(10):1419–1431. Google Scholar, Crossref, Medline, ISI |
| 44. | Ghosh-Dastidar, S, Adeli, H. Improved spiking neural networks for EEG classification and epilepsy and seizure detection. Integrated Computer-Aided Eng. 2007;14(3):187–212. Google Scholar, ISI |
| 45. | Ghosh-Dastidar, S, Adeli, H, Dadmehr, N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans Biomed Eng. 2008;55(2):512–518. Google Scholar, Crossref, Medline, ISI |
| 46. | Adeli, H, Ghosh-Dastidar, S. Automated EEG-Based Diagnosis of Neurological Disorders-Inventing the Future of Neurology. Taylor & Francis, Boca Raton, Florida: CRC Press; 2010. Google Scholar, Crossref |
| 47. | Adeli, H, Ghosh-Dastidar, S, Dadmehr, N. Alzheimer’s disease and models of computation: imaging, classification, and neural models. J Alzheimer’s Dis. 2005;7(3):187–199. Google Scholar, Crossref, Medline, ISI |
| 48. | Adeli, H, Ghosh-Dastidar, S, Dadmehr, N. Alzheimer’s disease: models of computation and analysis of EEGs. Clin EEG Neurosci. 2005;36(3):131–140. Google Scholar, SAGE Journals, ISI |
| 49. | Adeli, H, Ghosh-Dastidar, S, Dadmehr, N. A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer’s disease. Neuroscience Letters. 2008;444(2):190–194. Google Scholar, Crossref, Medline, ISI |
| 50. | Stam, CJ, van Dijk, BW. Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets. Physica D: Nonlinear Phenomena. 2002;163(3-4):236–251. Google Scholar, Crossref, ISI |
| 51. | Watts, DJ, Strogatz, SH. Collective dynamics of ‘small-world' networks. Nature. 1998;393(6684):409–410. Google Scholar, Crossref, Medline, ISI |
| 52. | Sporns, O, Zwi, JD. The small world of the cerebral cortex. Neuroinformatics. 2004;2(2):145–162. Google Scholar, Crossref, Medline, ISI |
| 53. | Bassett, DS . Small-world brain networks. Neuroscientist. 2006;12(6):512–523. Google Scholar, SAGE Journals, ISI |
| 54. | Liu, Y, Liang, M, Zhou, Y. Disrupted small-world networks in schizophrenia. Brain. 2008;131(4):945–961. Google Scholar, Crossref, Medline, ISI |
| 55. | Han, FM, Wiercigroch, M, Fang, JA, Wang, Z. Excitement and synchronization of small-world neuronal networks with short-term synaptic plasticity. Int J Neural Syst. 2011;21(5):415–525. Google Scholar, Crossref, Medline, ISI |
| 56. | Gorban, AN, Zinovyev, A. Principal manifolds and graphs in practice: from molecular biology to dynamical systems. Int J Neural Syst. 2010;20(3):219–232. Google Scholar, Crossref, Medline, ISI |
| 57. | Lattari, L, Montenegro, A, Conci, A. Using graph cuts in GPUs for color-based human skin segmentation. Integrated Computer-Aided Eng. 2011;18(1):41–59. Google Scholar, ISI |
| 58. | Faustino, GM, Gattass, M, de Lucena, CJP, Campos, PB, Rehen, SK. A graph-mining algorithm for automatic detection and counting of embryonic stem cells in fluorescence microscopy image. Integrated Computer-Aided Eng. 2011;18(1):91–106. Google Scholar, ISI |
| 59. | Smit, DJ, Stam, CJ, Posthuma, D, Boomsma, DI, de Geus, EJ. Heritability of “small-world” networks in the brain: a graph theoretical analysis of resting-state EEG functional connectivity. Hum Brain Mapp. 2008;29(12):1368–1378. Google Scholar, Crossref, Medline, ISI |
| 60. | Bullmore, E, Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186–198. Google Scholar, Crossref, Medline, ISI |
| 61. | Stam, CJ, Jones, BF, Nolte, G, Breakspear, M, Scheltens, P. Small-world networks and functional connectivity in Alzheimer's disease. Cereb Cortex. 2007;17(1):92–99. Google Scholar, Crossref, Medline, ISI |
| 62. | Ahmadlou, M, Adeli, H. Fuzzy synchronization likelihood with application to attention deficit hyperactivity disorder. Clin EEG Neurosci. 2011;42(1):6–13. Google Scholar, SAGE Journals, ISI |
| 63. | Salvador, R, Suckling, J, Schwarzbauer, C, Bullmore, E. Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc B: Biol Sci. 2005;360(1457):937–946. Google Scholar, Crossref, Medline, ISI |
| 64. | Ford, JM, Mathalon, DH. Neural synchrony in schizophrenia. Schizophr Bull. 2008;34(5):904–906. Google Scholar, Crossref, Medline, ISI |
| 65. | Barrat, A, Barthelemy, M, Pastor-Satorras, R, Vespignani, A. The architecture of complex weighted networks. Proc Natl Acad Sci U S A. 2004;101(11):3747–3752. Google Scholar, Crossref, Medline, ISI |
| 66. | Li, W, Lin, Y, Liu, Y. The structure of weighted small-world networks. Phys A: Stat Mech Appl. 2007;376:708–718. Google Scholar, Crossref, ISI |
| 67. | Latora, V, Marchiori, M. Economic small-world behavior in weighted networks. European Phys J B-Condensed Matter and Complex Syst. 2003;32(2):249–263. Google Scholar, Crossref |
| 68. | Carmona, S, Vilarroya, O, Bielsa, A. Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett. 2005;389(2):88–93. Google Scholar, Crossref, Medline, ISI |
| 69. | Hale, TS, McCracken, JT, McGough, JJ, Smalley, SL, Phillips, JM, Zaidel, E. Impaired linguistic processing and atypical brain laterality in adults with ADHD. Clin Neurosci Res. 2005;5(5-6):255–263. Google Scholar, Crossref, ISI |
| 70. | Chan, KS, Tong, H. Chaos: A Statistical Perspective. New York, NY: Springer; 2001:113–122. Google Scholar, Crossref |
| 71. | Arnold, J, Grassberger, P, Lehnertz, K, Elger, CE. A robust method for detecting interdependences: application to intracranially recorded EEG. Phys D: Nonlinear Phenomena. 1999;134(4):419–430. Google Scholar, Crossref, ISI |
| 72. | Pereda, E, Rial, R, Gamundi, A, Gonza'lez, J. Assessment of changing interdependencies between human electroencephalograms using nonlinear methods. Phys D: Nonlinear Phenomena. 2001;148(1-2):147–158. Google Scholar, Crossref, ISI |

