Abstract
Alterations of cortical excitability, oscillatory as well as non-oscillatory, are physiological derivates of cognitive processes, such as perception, working memory, learning, and long-term memory formation. Since noninvasive electrical brain stimulation is capable of inducing alterations in the human brain, these stimulation approaches might be attractive tools to modulate cognition. Transcranial direct current stimulation (tDCS) alters spontaneous cortical activity, while transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) are presumed to induce or interfere with oscillations of cortical networks. Via these mechanisms, the respective stimulation techniques have indeed been shown to modulate cognitive processes in a multitude of studies conducted during the last years. In this review, we will gather knowledge about the potential of noninvasive electrical brain stimulation to study and modify cognitive processes in healthy humans and discuss directions of future research.
| 1. | Nitsche, M, Nitsche, M, Klein, C, Tergau, F, Rothwell, J, Paulus, W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114(4):600–604. Google Scholar, Crossref, Medline, ISI |
| 2. | Nitsche, M, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(pt 3):633–639. Google Scholar, Crossref, Medline, ISI |
| 3. | Nitsche, M, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):1899–1901. Google Scholar, Crossref, Medline, ISI |
| 4. | Nitsche, MA, Cohen, LG, Wassermann, EM Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–223. Google Scholar, Crossref, Medline, ISI |
| 5. | Malenka, R, Bear, M. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):5–21. Google Scholar, Crossref, Medline, ISI |
| 6. | Antal, A, Boros, K, Poreisz, C, Chaieb, L, Terney, D, Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97–105. Google Scholar, Crossref, Medline, ISI |
| 7. | Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–14155. Google Scholar, Crossref, Medline, ISI |
| 8. | Bindman, L, Lippold, O, Redfearn, JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol (Lond). 1964;172:369–382. Google Scholar, Crossref |
| 9. | Purpura, DP, McMurtry, JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166–185. Google Scholar, Crossref, Medline, ISI |
| 10. | Antal, A, Nitsche, M, Kruse, W, Kincses, T, Hoffmann, K, Paulus, W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci. 2004;16(4):521–527. Google Scholar, Crossref, Medline, ISI |
| 11. | Matsunaga, K, Nitsche, M, Tsuji, S, Rothwell, J. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2004;115(2):456–460. Google Scholar, Crossref, Medline, ISI |
| 12. | Nitsche, M, Fricke, K, Henschke, U Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(pt 1):293–301. Google Scholar, Crossref, Medline, ISI |
| 13. | Nitsche, M, Jaussi, W, Liebetanz, D, Lang, N, Tergau, F, Paulus, W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29(8):1573–1578. Google Scholar, Crossref, Medline, ISI |
| 14. | Liebetanz, D, Nitsche, M, Tergau, F, Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(pt 10):2238–2247. Google Scholar, Crossref, Medline, ISI |
| 15. | Rioult-Pedotti, M, Friedman, D, Donoghue, J. Learning-induced LTP in neocortex. Science. 2000;290(5491):533–536. Google Scholar, Crossref, Medline, ISI |
| 16. | Antal, A, Nitsche, M, Paulus, W. External modulation of visual perception in humans. Neuroreport. 2001;12(16):3553–3555. Google Scholar, Crossref, Medline, ISI |
| 17. | Kraft, A, Kehrer, S, Hagendorf, H, Brandt, SA. Hemifield effects of spatial attention in early human visual cortex. Eur J Neurosci 2011;33(12):2349–2358. Google Scholar, Crossref, Medline, ISI |
| 18. | Varga, ET, Elif, K, Antal, A Cathodal transcranial direct current stimulation over the parietal cortex modifies facial gender adaptation. Ideggyogy Sz. 2007;60(11-12):474–479. Google Scholar, Medline |
| 19. | Rogalewski, A, Breitenstein, C, Nitsche, M, Paulus, W, Knecht, S. Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci. 2004;20(1):313–316. Google Scholar, Crossref, Medline, ISI |
| 20. | Ragert, P, Vandermeeren, Y, Camus, M, Cohen, LG. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol. 2008;119(4):805–811. Google Scholar, Crossref, Medline, ISI |
| 21. | Antal, A, Brepohl, N, Poreisz, C, Boros, K, Csifcsak, G, Paulus, W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain. 2008;24(1):56–63. Google Scholar, Crossref, Medline, ISI |
| 22. | Grundmann, L, Rolke, R, Nitsche, MA Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 2011;4(4):253–260. Google Scholar, Crossref, Medline, ISI |
| 23. | Bachmann, CG, Muschinsky, S, Nitsche, MA Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin Neurophysiol. 2010;121(12):2083–2089. Google Scholar, Crossref, Medline, ISI |
| 24. | Loui, P, Hohmann, A, Schlaug, G. Inducing disorders in pitch perception and production: a reverse-engineering approach. Proc Meet Acoust. 2010;9(1):50002. Google Scholar, Crossref, Medline |
| 25. | Ladeira, A, Fregni, F, Campanha, C Polarity-dependent transcranial direct current stimulation effects on central auditory processing. PLoS One. 2011;6(9):e25399. Google Scholar, Crossref, Medline, ISI |
| 26. | Bolognini, N, Rossetti, A, Casati, C, Mancini, F, Vallar, G. Neuromodulation of multisensory perception: a tDCS study of the sound-induced flash illusion. Neuropsychologia. 2011;49(2):231–237. Google Scholar, Crossref, Medline, ISI |
| 27. | Bolognini, N, Fregni, F, Casati, C, Olgiati, E, Vallar, G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010;1349:76–89. Google Scholar, Crossref, Medline, ISI |
| 28. | Fregni, F, Boggio, P, Nitsche, M Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):23–30. Google Scholar, Crossref, Medline, ISI |
| 29. | Ohn, SH, Park, CI, Yoo, WK Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19(1):43–47. Google Scholar, Crossref, Medline, ISI |
| 30. | Zaehle, T, Sandmann, P, Thorne, JD, Jancke, L, Herrmann, CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12:2. Google Scholar, Crossref, Medline, ISI |
| 31. | Teo, F, Hoy, KE, Daskalakis, ZJ, Fitzgerald, PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45. Google Scholar, Crossref, Medline |
| 32. | Mulquiney, PG, Hoy, KE, Daskalakis, ZJ, Fitzgerald, PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):2384–2389. Google Scholar, Crossref, Medline, ISI |
| 33. | Berryhill, ME, Wencil, EB, Branch Coslett, H, Olson, IR. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett. 2010;479(3):312–316. Google Scholar, Crossref, Medline, ISI |
| 34. | Ferrucci, R, Marceglia, S, Vergari, M Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):1687–1697. Google Scholar, Crossref, Medline, ISI |
| 35. | Honda, M, Deiber, M, Ibanez, V, Pascual-Leone, A, Zhuang, P, Hallett, M. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain. 1998;121 (pt 11):2159–2173. Google Scholar, Crossref, Medline, ISI |
| 36. | Antal, A, Nitsche, M, Kincses, T, Kruse, W, Hoffmann, K, Paulus, W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci. 2004;19(10):2888–2892. Google Scholar, Crossref, Medline, ISI |
| 37. | Nitsche, M, Schauenburg, A, Lang, N Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619–626. Google Scholar, Crossref, Medline, ISI |
| 38. | Hunter, T, Sacco, P, Nitsche, MA, Turner, DL. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol. 2009;587(pt 12):2949–2961. Google Scholar, Crossref, Medline, ISI |
| 39. | Tecchio, F, Zappasodi, F, Assenza, G Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol. 2010;104(2):1134–1140. Google Scholar, Crossref, Medline, ISI |
| 40. | Orban de Xivry, J-J, Marko, MK, Pekny, SE Stimulation of the human motor cortex alters generalization patterns of motor learning. J Neurosci. 2011;31(19):7102–7110. Google Scholar, Crossref, Medline, ISI |
| 41. | Maquet, P, Laureys, S, Peigneux, P Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci. 2000;3(8):831–836. Google Scholar, Crossref, Medline, ISI |
| 42. | Nitsche, MA, Jakoubkova, M, Thirugnanasambandam, N Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol. 2010;104(5):2603–2614. Google Scholar, Crossref, Medline, ISI |
| 43. | Antal, A, Begemeier, S, Nitsche, MA, Paulus, W. Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia. 2008;46(13):3157–3161. Google Scholar, Crossref, Medline, ISI |
| 44. | Reis, J, Schambra, HM, Cohen, LG Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):1590–1595. Google Scholar, Crossref, Medline, ISI |
| 45. | Schambra, HM, Abe, M, Luckenbaugh, DA, Reis, J, Krakauer, JW, Cohen, LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol. 2011;106(2):652–661. Google Scholar, Crossref, Medline, ISI |
| 46. | Flöel, A, Rosser, N, Michka, O, Knecht, S, Breitenstein, C. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):1415–1422. Google Scholar, Crossref, Medline, ISI |
| 47. | Elmer, S, Burkard, M, Renz, B, Meyer, M, Jancke, L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct. 2009;5:29. Google Scholar, Crossref, Medline, ISI |
| 48. | Hammer, A, Mohammadi, B, Schmicker, M, Saliger, S, Munte, TF. Errorless and errorful learning modulated by transcranial direct current stimulation. BMC Neurosci. 2011;12:72. Google Scholar, Crossref, Medline, ISI |
| 49. | Liuzzi, G, Freundlieb, N, Ridder, V The involvement of the left motor cortex in learning of a novel action word lexicon. Curr Biol. 2010;20(19):1745–1751. Google Scholar, Crossref, Medline, ISI |
| 50. | de Vries, MH, Barth, AC, Maiworm, S, Knecht, S, Zwitserlood, P, Floel, A. Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar. J Cogn Neurosci. 2010;22(11):2427–2436. Google Scholar, Crossref, Medline, ISI |
| 51. | Marshall, L, Kirov, R, Brade, J, Molle, M, Born, J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One. 2011;6(2):e16905. Google Scholar, Crossref, Medline, ISI |
| 52. | Marshall, L, Molle, M, Hallschmid, M, Born, J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24(44):9985–9992. Google Scholar, Crossref, Medline, ISI |
| 53. | Fiori, V, Coccia, M, Marinelli, CV Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–2323. Google Scholar, Crossref, Medline, ISI |
| 54. | Ross, LA, McCoy, D, Wolk, DA, Coslett, HB, Olson, IR. Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia. 2010;48(12):3671–3674. Google Scholar, Crossref, Medline, ISI |
| 55. | Chi, RP, Fregni, F, Snyder, AW. Visual memory improved by non-invasive brain stimulation. Brain Res. 2010;1353:168–175. Google Scholar, Crossref, Medline, ISI |
| 56. | Penolazzi, B, Di Domenico, A, Marzoli, D Effects of transcranial direct current stimulation on episodic memory related to emotional visual stimuli. PLoS One. 2010;5(5):e10623. Google Scholar, Crossref, Medline, ISI |
| 57. | Flöel, A, Suttorp, W, Kohl, O Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2011 doi: http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.007. Google Scholar |
| 58. | Clark, VP, Coffman, BA, Mayer, AR TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117–128. Google Scholar, Crossref, Medline, ISI |
| 59. | Bullard, LM, Browning, ES, Clark, VP Transcranial direct current stimulation's effect on novice versus experienced learning. Exp Brain Res. 2011;213(1):9–14. Google Scholar, Crossref, Medline, ISI |
| 60. | Cohen Kadosh, R, Soskic, S, Iuculano, T, Kanai, R, Walsh, V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):2016–2020. Google Scholar, Crossref, Medline, ISI |
| 61. | Hecht, D, Walsh, V, Lavidor, M. Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci. 2010;30(12):4241–4245. Google Scholar, Crossref, Medline, ISI |
| 62. | Kincses, T, Antal, A, Nitsche, M, Bartfai, O, Paulus, W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia. 2004;42(1):113–117. Google Scholar, Crossref, Medline, ISI |
| 63. | Boggio, PS, Fregni, F, Valasek, C Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS One. 2009;4(3):e4959. Google Scholar, Crossref, Medline, ISI |
| 64. | Cerruti, C, Schlaug, G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):1980–1987. Google Scholar, Crossref, Medline, ISI |
| 65. | Chi, RP, Snyder, AW. Facilitate insight by non-invasive brain stimulation. PLoS One. 2011;6(2):e16655. Google Scholar, Crossref, Medline, ISI |
| 66. | Dockery, CA, Hueckel-Weng, R, Birbaumer, N, Plewnia, C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009;29(22):7271–7277. Google Scholar, Crossref, Medline, ISI |
| 67. | Fecteau, S, Knoch, D, Fregni, F, Sultani, N, Boggio, P, Pascual-Leone, A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007;27(46):12500–12505. Google Scholar, Crossref, Medline, ISI |
| 68. | Fecteau, S, Pascual-Leone, A, Zald, DH Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007;27(23):6212–6218. Google Scholar, Crossref, Medline, ISI |
| 69. | Knoch, D, Nitsche, MA, Fischbacher, U, Eisenegger, C, Pascual-Leone, A, Fehr, E. Studying the neurobiology of social interaction with transcranial direct current stimulation--the example of punishing unfairness. Cereb Cortex. 2008;18(9):1987–1990. Google Scholar, Crossref, Medline, ISI |
| 70. | Feurra, M, Bianco, G, Santarnecchi, E, Del Testa, M, Rossi, A, Rossi, S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31(34):12165–12170. Google Scholar, Crossref, Medline, ISI |
| 71. | Kanai, R, Chaieb, L, Antal, A, Walsh, V, Paulus, W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18(23):1839–1843. Google Scholar, Crossref, Medline, ISI |
| 72. | Laczo, B, Antal, A, Niebergall, R, Treue, S, Paulus, W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2011 doi:10.1016/j.brs.2011.08.008. Google Scholar, ISI |
| 73. | Feurra, M, Paulus, W, Walsh, V, Kanai, R. Frequency specific modulation of human somatosensory cortex. Front Psychol. 2011;2:13. Google Scholar, Crossref, Medline, ISI |
| 74. | Moliadze, V, Antal, A, Paulus, W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010;588(pt 24):4891–4904. Google Scholar, Crossref, Medline, ISI |
| 75. | Jensen, O, Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2011;4:186. Google Scholar, ISI |
| 76. | Fertonani, A, Pirulli, C, Miniussi, C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011;31(43):15416–15423. Google Scholar, Crossref, Medline, ISI |
| 77. | Ambrus, GG, Zimmer, M, Kincses, ZT The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia. 2011;49(7):1974–1980. Google Scholar, Crossref, Medline, ISI |

