Alterations of cortical excitability, oscillatory as well as non-oscillatory, are physiological derivates of cognitive processes, such as perception, working memory, learning, and long-term memory formation. Since noninvasive electrical brain stimulation is capable of inducing alterations in the human brain, these stimulation approaches might be attractive tools to modulate cognition. Transcranial direct current stimulation (tDCS) alters spontaneous cortical activity, while transcranial alternating current stimulation (tACS) and transcranial random noise stimulation (tRNS) are presumed to induce or interfere with oscillations of cortical networks. Via these mechanisms, the respective stimulation techniques have indeed been shown to modulate cognitive processes in a multitude of studies conducted during the last years. In this review, we will gather knowledge about the potential of noninvasive electrical brain stimulation to study and modify cognitive processes in healthy humans and discuss directions of future research.

1. Nitsche, M, Nitsche, M, Klein, C, Tergau, F, Rothwell, J, Paulus, W. Level of action of cathodal DC polarisation induced inhibition of the human motor cortex. Clin Neurophysiol. 2003;114(4):600604. Google Scholar, Crossref, Medline, ISI
2. Nitsche, M, Paulus, W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(pt 3):633639. Google Scholar, Crossref, Medline, ISI
3. Nitsche, M, Paulus, W. Sustained excitability elevations induced by transcranial DC motor cortex stimulation in humans. Neurology. 2001;57(10):18991901. Google Scholar, Crossref, Medline, ISI
4. Nitsche, MA, Cohen, LG, Wassermann, EM Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206223. Google Scholar, Crossref, Medline, ISI
5. Malenka, R, Bear, M. LTP and LTD: an embarrassment of riches. Neuron. 2004;44(1):521. Google Scholar, Crossref, Medline, ISI
6. Antal, A, Boros, K, Poreisz, C, Chaieb, L, Terney, D, Paulus, W. Comparatively weak after-effects of transcranial alternating current stimulation (tACS) on cortical excitability in humans. Brain Stimul. 2008;1(2):97105. Google Scholar, Crossref, Medline, ISI
7. Terney, D, Chaieb, L, Moliadze, V, Antal, A, Paulus, W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):1414714155. Google Scholar, Crossref, Medline, ISI
8. Bindman, L, Lippold, O, Redfearn, JWT. The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol (Lond). 1964;172:369382. Google Scholar, Crossref
9. Purpura, DP, McMurtry, JG. Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol. 1965;28:166185. Google Scholar, Crossref, Medline, ISI
10. Antal, A, Nitsche, M, Kruse, W, Kincses, T, Hoffmann, K, Paulus, W. Direct current stimulation over V5 enhances visuomotor coordination by improving motion perception in humans. J Cogn Neurosci. 2004;16(4):521527. Google Scholar, Crossref, Medline, ISI
11. Matsunaga, K, Nitsche, M, Tsuji, S, Rothwell, J. Effect of transcranial DC sensorimotor cortex stimulation on somatosensory evoked potentials in humans. Clin Neurophysiol. 2004;115(2):456460. Google Scholar, Crossref, Medline, ISI
12. Nitsche, M, Fricke, K, Henschke, U Pharmacological modulation of cortical excitability shifts induced by transcranial direct current stimulation in humans. J Physiol. 2003;553(pt 1):293301. Google Scholar, Crossref, Medline, ISI
13. Nitsche, M, Jaussi, W, Liebetanz, D, Lang, N, Tergau, F, Paulus, W. Consolidation of human motor cortical neuroplasticity by D-cycloserine. Neuropsychopharmacology. 2004;29(8):15731578. Google Scholar, Crossref, Medline, ISI
14. Liebetanz, D, Nitsche, M, Tergau, F, Paulus, W. Pharmacological approach to the mechanisms of transcranial DC-stimulation-induced after-effects of human motor cortex excitability. Brain. 2002;125(pt 10):22382247. Google Scholar, Crossref, Medline, ISI
15. Rioult-Pedotti, M, Friedman, D, Donoghue, J. Learning-induced LTP in neocortex. Science. 2000;290(5491):533536. Google Scholar, Crossref, Medline, ISI
16. Antal, A, Nitsche, M, Paulus, W. External modulation of visual perception in humans. Neuroreport. 2001;12(16):35533555. Google Scholar, Crossref, Medline, ISI
17. Kraft, A, Kehrer, S, Hagendorf, H, Brandt, SA. Hemifield effects of spatial attention in early human visual cortex. Eur J Neurosci 2011;33(12):23492358. Google Scholar, Crossref, Medline, ISI
18. Varga, ET, Elif, K, Antal, A Cathodal transcranial direct current stimulation over the parietal cortex modifies facial gender adaptation. Ideggyogy Sz. 2007;60(11-12):474479. Google Scholar, Medline
19. Rogalewski, A, Breitenstein, C, Nitsche, M, Paulus, W, Knecht, S. Transcranial direct current stimulation disrupts tactile perception. Eur J Neurosci. 2004;20(1):313316. Google Scholar, Crossref, Medline, ISI
20. Ragert, P, Vandermeeren, Y, Camus, M, Cohen, LG. Improvement of spatial tactile acuity by transcranial direct current stimulation. Clin Neurophysiol. 2008;119(4):805811. Google Scholar, Crossref, Medline, ISI
21. Antal, A, Brepohl, N, Poreisz, C, Boros, K, Csifcsak, G, Paulus, W. Transcranial direct current stimulation over somatosensory cortex decreases experimentally induced acute pain perception. Clin J Pain. 2008;24(1):5663. Google Scholar, Crossref, Medline, ISI
22. Grundmann, L, Rolke, R, Nitsche, MA Effects of transcranial direct current stimulation of the primary sensory cortex on somatosensory perception. Brain Stimul. 2011;4(4):253260. Google Scholar, Crossref, Medline, ISI
23. Bachmann, CG, Muschinsky, S, Nitsche, MA Transcranial direct current stimulation of the motor cortex induces distinct changes in thermal and mechanical sensory percepts. Clin Neurophysiol. 2010;121(12):20832089. Google Scholar, Crossref, Medline, ISI
24. Loui, P, Hohmann, A, Schlaug, G. Inducing disorders in pitch perception and production: a reverse-engineering approach. Proc Meet Acoust. 2010;9(1):50002. Google Scholar, Crossref, Medline
25. Ladeira, A, Fregni, F, Campanha, C Polarity-dependent transcranial direct current stimulation effects on central auditory processing. PLoS One. 2011;6(9):e25399. Google Scholar, Crossref, Medline, ISI
26. Bolognini, N, Rossetti, A, Casati, C, Mancini, F, Vallar, G. Neuromodulation of multisensory perception: a tDCS study of the sound-induced flash illusion. Neuropsychologia. 2011;49(2):231237. Google Scholar, Crossref, Medline, ISI
27. Bolognini, N, Fregni, F, Casati, C, Olgiati, E, Vallar, G. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills. Brain Res. 2010;1349:7689. Google Scholar, Crossref, Medline, ISI
28. Fregni, F, Boggio, P, Nitsche, M Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory. Exp Brain Res. 2005;166(1):2330. Google Scholar, Crossref, Medline, ISI
29. Ohn, SH, Park, CI, Yoo, WK Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory. Neuroreport. 2008;19(1):4347. Google Scholar, Crossref, Medline, ISI
30. Zaehle, T, Sandmann, P, Thorne, JD, Jancke, L, Herrmann, CS. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence. BMC Neurosci. 2011;12:2. Google Scholar, Crossref, Medline, ISI
31. Teo, F, Hoy, KE, Daskalakis, ZJ, Fitzgerald, PB. Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psychiatry. 2011;2:45. Google Scholar, Crossref, Medline
32. Mulquiney, PG, Hoy, KE, Daskalakis, ZJ, Fitzgerald, PB. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex. Clin Neurophysiol. 2011;122(12):23842389. Google Scholar, Crossref, Medline, ISI
33. Berryhill, ME, Wencil, EB, Branch Coslett, H, Olson, IR. A selective working memory impairment after transcranial direct current stimulation to the right parietal lobe. Neurosci Lett. 2010;479(3):312316. Google Scholar, Crossref, Medline, ISI
34. Ferrucci, R, Marceglia, S, Vergari, M Cerebellar transcranial direct current stimulation impairs the practice-dependent proficiency increase in working memory. J Cogn Neurosci. 2008;20(9):16871697. Google Scholar, Crossref, Medline, ISI
35. Honda, M, Deiber, M, Ibanez, V, Pascual-Leone, A, Zhuang, P, Hallett, M. Dynamic cortical involvement in implicit and explicit motor sequence learning. A PET study. Brain. 1998;121 (pt 11):21592173. Google Scholar, Crossref, Medline, ISI
36. Antal, A, Nitsche, M, Kincses, T, Kruse, W, Hoffmann, K, Paulus, W. Facilitation of visuo-motor learning by transcranial direct current stimulation of the motor and extrastriate visual areas in humans. Eur J Neurosci. 2004;19(10):28882892. Google Scholar, Crossref, Medline, ISI
37. Nitsche, M, Schauenburg, A, Lang, N Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619626. Google Scholar, Crossref, Medline, ISI
38. Hunter, T, Sacco, P, Nitsche, MA, Turner, DL. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. J Physiol. 2009;587(pt 12):29492961. Google Scholar, Crossref, Medline, ISI
39. Tecchio, F, Zappasodi, F, Assenza, G Anodal transcranial direct current stimulation enhances procedural consolidation. J Neurophysiol. 2010;104(2):11341140. Google Scholar, Crossref, Medline, ISI
40. Orban de Xivry, J-J, Marko, MK, Pekny, SE Stimulation of the human motor cortex alters generalization patterns of motor learning. J Neurosci. 2011;31(19):71027110. Google Scholar, Crossref, Medline, ISI
41. Maquet, P, Laureys, S, Peigneux, P Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci. 2000;3(8):831836. Google Scholar, Crossref, Medline, ISI
42. Nitsche, MA, Jakoubkova, M, Thirugnanasambandam, N Contribution of the premotor cortex to consolidation of motor sequence learning in humans during sleep. J Neurophysiol. 2010;104(5):26032614. Google Scholar, Crossref, Medline, ISI
43. Antal, A, Begemeier, S, Nitsche, MA, Paulus, W. Prior state of cortical activity influences subsequent practicing of a visuomotor coordination task. Neuropsychologia. 2008;46(13):31573161. Google Scholar, Crossref, Medline, ISI
44. Reis, J, Schambra, HM, Cohen, LG Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci U S A. 2009;106(5):15901595. Google Scholar, Crossref, Medline, ISI
45. Schambra, HM, Abe, M, Luckenbaugh, DA, Reis, J, Krakauer, JW, Cohen, LG. Probing for hemispheric specialization for motor skill learning: a transcranial direct current stimulation study. J Neurophysiol. 2011;106(2):652661. Google Scholar, Crossref, Medline, ISI
46. Flöel, A, Rosser, N, Michka, O, Knecht, S, Breitenstein, C. Noninvasive brain stimulation improves language learning. J Cogn Neurosci. 2008;20(8):14151422. Google Scholar, Crossref, Medline, ISI
47. Elmer, S, Burkard, M, Renz, B, Meyer, M, Jancke, L. Direct current induced short-term modulation of the left dorsolateral prefrontal cortex while learning auditory presented nouns. Behav Brain Funct. 2009;5:29. Google Scholar, Crossref, Medline, ISI
48. Hammer, A, Mohammadi, B, Schmicker, M, Saliger, S, Munte, TF. Errorless and errorful learning modulated by transcranial direct current stimulation. BMC Neurosci. 2011;12:72. Google Scholar, Crossref, Medline, ISI
49. Liuzzi, G, Freundlieb, N, Ridder, V The involvement of the left motor cortex in learning of a novel action word lexicon. Curr Biol. 2010;20(19):17451751. Google Scholar, Crossref, Medline, ISI
50. de Vries, MH, Barth, AC, Maiworm, S, Knecht, S, Zwitserlood, P, Floel, A. Electrical stimulation of Broca's area enhances implicit learning of an artificial grammar. J Cogn Neurosci. 2010;22(11):24272436. Google Scholar, Crossref, Medline, ISI
51. Marshall, L, Kirov, R, Brade, J, Molle, M, Born, J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One. 2011;6(2):e16905. Google Scholar, Crossref, Medline, ISI
52. Marshall, L, Molle, M, Hallschmid, M, Born, J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci. 2004;24(44):99859992. Google Scholar, Crossref, Medline, ISI
53. Fiori, V, Coccia, M, Marinelli, CV Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):23092323. Google Scholar, Crossref, Medline, ISI
54. Ross, LA, McCoy, D, Wolk, DA, Coslett, HB, Olson, IR. Improved proper name recall by electrical stimulation of the anterior temporal lobes. Neuropsychologia. 2010;48(12):36713674. Google Scholar, Crossref, Medline, ISI
55. Chi, RP, Fregni, F, Snyder, AW. Visual memory improved by non-invasive brain stimulation. Brain Res. 2010;1353:168175. Google Scholar, Crossref, Medline, ISI
56. Penolazzi, B, Di Domenico, A, Marzoli, D Effects of transcranial direct current stimulation on episodic memory related to emotional visual stimuli. PLoS One. 2010;5(5):e10623. Google Scholar, Crossref, Medline, ISI
57. Flöel, A, Suttorp, W, Kohl, O Non-invasive brain stimulation improves object-location learning in the elderly. Neurobiol Aging. 2011 doi: http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.007. Google Scholar
58. Clark, VP, Coffman, BA, Mayer, AR TDCS guided using fMRI significantly accelerates learning to identify concealed objects. Neuroimage. 2012;59(1):117128. Google Scholar, Crossref, Medline, ISI
59. Bullard, LM, Browning, ES, Clark, VP Transcranial direct current stimulation's effect on novice versus experienced learning. Exp Brain Res. 2011;213(1):914. Google Scholar, Crossref, Medline, ISI
60. Cohen Kadosh, R, Soskic, S, Iuculano, T, Kanai, R, Walsh, V. Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Curr Biol. 2010;20(22):20162020. Google Scholar, Crossref, Medline, ISI
61. Hecht, D, Walsh, V, Lavidor, M. Transcranial direct current stimulation facilitates decision making in a probabilistic guessing task. J Neurosci. 2010;30(12):42414245. Google Scholar, Crossref, Medline, ISI
62. Kincses, T, Antal, A, Nitsche, M, Bartfai, O, Paulus, W. Facilitation of probabilistic classification learning by transcranial direct current stimulation of the prefrontal cortex in the human. Neuropsychologia. 2004;42(1):113117. Google Scholar, Crossref, Medline, ISI
63. Boggio, PS, Fregni, F, Valasek, C Temporal lobe cortical electrical stimulation during the encoding and retrieval phase reduces false memories. PLoS One. 2009;4(3):e4959. Google Scholar, Crossref, Medline, ISI
64. Cerruti, C, Schlaug, G. Anodal transcranial direct current stimulation of the prefrontal cortex enhances complex verbal associative thought. J Cogn Neurosci. 2009;21(10):19801987. Google Scholar, Crossref, Medline, ISI
65. Chi, RP, Snyder, AW. Facilitate insight by non-invasive brain stimulation. PLoS One. 2011;6(2):e16655. Google Scholar, Crossref, Medline, ISI
66. Dockery, CA, Hueckel-Weng, R, Birbaumer, N, Plewnia, C. Enhancement of planning ability by transcranial direct current stimulation. J Neurosci. 2009;29(22):72717277. Google Scholar, Crossref, Medline, ISI
67. Fecteau, S, Knoch, D, Fregni, F, Sultani, N, Boggio, P, Pascual-Leone, A. Diminishing risk-taking behavior by modulating activity in the prefrontal cortex: a direct current stimulation study. J Neurosci. 2007;27(46):1250012505. Google Scholar, Crossref, Medline, ISI
68. Fecteau, S, Pascual-Leone, A, Zald, DH Activation of prefrontal cortex by transcranial direct current stimulation reduces appetite for risk during ambiguous decision making. J Neurosci. 2007;27(23):62126218. Google Scholar, Crossref, Medline, ISI
69. Knoch, D, Nitsche, MA, Fischbacher, U, Eisenegger, C, Pascual-Leone, A, Fehr, E. Studying the neurobiology of social interaction with transcranial direct current stimulation--the example of punishing unfairness. Cereb Cortex. 2008;18(9):19871990. Google Scholar, Crossref, Medline, ISI
70. Feurra, M, Bianco, G, Santarnecchi, E, Del Testa, M, Rossi, A, Rossi, S. Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. J Neurosci. 2011;31(34):1216512170. Google Scholar, Crossref, Medline, ISI
71. Kanai, R, Chaieb, L, Antal, A, Walsh, V, Paulus, W. Frequency-dependent electrical stimulation of the visual cortex. Curr Biol. 2008;18(23):18391843. Google Scholar, Crossref, Medline, ISI
72. Laczo, B, Antal, A, Niebergall, R, Treue, S, Paulus, W. Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul. 2011 doi:10.1016/j.brs.2011.08.008. Google Scholar, ISI
73. Feurra, M, Paulus, W, Walsh, V, Kanai, R. Frequency specific modulation of human somatosensory cortex. Front Psychol. 2011;2:13. Google Scholar, Crossref, Medline, ISI
74. Moliadze, V, Antal, A, Paulus, W. Boosting brain excitability by transcranial high frequency stimulation in the ripple range. J Physiol. 2010;588(pt 24):48914904. Google Scholar, Crossref, Medline, ISI
75. Jensen, O, Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci. 2011;4:186. Google Scholar, ISI
76. Fertonani, A, Pirulli, C, Miniussi, C. Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci. 2011;31(43):1541615423. Google Scholar, Crossref, Medline, ISI
77. Ambrus, GG, Zimmer, M, Kincses, ZT The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia. 2011;49(7):19741980. Google Scholar, Crossref, Medline, ISI
View access options

My Account

You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Article

Your Access Options


Purchase

EEG-article-ppv for $40.00

Article available in: