Abstract

Until now, many design and manufacturing tasks have only seen partial computerization. One such task is that of assembly planning. This paper presents a system for use in a subarea of assembly planning, the configuration of grippers for robotic assembly. The system is fully automated and thus represents a departure from current practice. The paper gives an example of the application of the system to simple gripper design problems.

1. Engelberger, J. F. Robotics in practice, 1980 (Kogan Page, London). Google Scholar
2. Moulianitis, V. C., Aspragathos, N. A., Dentsoras, A. J. A model for concept evaluation in design - an application to mechatronics design of robot grippers J. Mechatronics, 2004, 14(6), 599622. Google Scholar, Crossref
3. Cannon, B. R., Lillian, T. D., Magleby, S. P., Howell, L. L., Linford, M. R. A compliant end-effector for microscribing J. Precision Engng, 2004, 29(1), 8694. Google Scholar, Crossref
4. Yeung, B. H. B., Mills, J. K. Design of a six DOF reconfigurable gripper for flexible fixtureless assembly IEEE Trans. Syst., Man and Cybernetics, Part C: Applic. and Rev., 2004, 34(2), 226235. Google Scholar, Crossref
5. Sun, L., Xie, H., Rong, W., Chen, L. Task-reconfigurable system for MEMS assembly. In Proceedings of IEEE International Conference on Robotics and automation, ICRA 2005, Barcelona, Spain, 2005, pp. 832837. Google Scholar
6. Ragunathan, S., Karunamoorthy, L. Modelling and dynamic analysis of reconfigurable robotic gripper system for handling fabric materials in garment industries J. Advd Mfg Systs, 2006, 5(2), 233254. Google Scholar, Crossref
7. Causey, G. C., Quinn, R. D. Gripper design guidelines for modular manufacturing. Department of Mechanical and Aerospace Engineering, Case Western Reserve University http://dora.eeap.cwru.edu/agile/pubs.html. Google Scholar
8. Pham, D. T., Yeo, S. H. Strategies for gripper design and selection in robotic assembly Int. J. Prod. Res., 1991, 29(2), 303316. Google Scholar, Crossref
9. The ICAD system (release 7.2.2) user's manual, 2000 (Knowledge Technologies International, Lexington, Massachusetts). Google Scholar
10. Solaja, V. B., Urosevic, S. M. The method of hypothetical group technology production lines Ann. CIRP, 1973, 22(1). Google Scholar
11. Pham, D. T., Yeo, S. H. A knowledge-based system for robot gripper selection: Criteria for choosing grippers and surfaces for gripping Int. J. Mach. Tools and Mf., 28(4), 301313. Google Scholar, Crossref
12. Gourashi, N. S. Knowledge-based conceptual design of robot grippers. PhD Thesis, Cardiff University, UK, 2003. Google Scholar

Vol 221, Issue 11, 2007