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Abstract

Spatial epidemiology has benefited greatly from advances in geographic information system technology,

which permits extensive study of associations between various health responses and a wide array of socio-

economic and environmental factors. However, many spatial epidemiological datasets have missing values

for a substantial proportion of spatial variables, such as the census tract of residence of study participants.

The standard approach is to discard these observations and analyze only complete observations. In this

article, we propose a new hierarchical Bayesian spatial model to handle missing observation locations. Our

model utilizes all available information to learn about the missing locations and propagates uncertainty

about the missing locations throughout the model. We show via a simulation study that this method can

lead to more efficient epidemiological analysis. The method is applied to a study of the relationship

between fine particulate matter and birth outcomes is southeast Georgia, where we find smaller

posterior variance for most parameters using our missing data model compared to the standard

complete case model.
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1 Introduction

Spatial epidemiology has benefited greatly from advances in geographic information system (GIS)
technology. GIS facilitates the study of associations between various health responses and a wide
array of socio-economic and environmental factors. Despite improvements in data collection
methods and GIS technology,1,2 missing data remain prevalent in spatial health datasets. In this
article, we specifically address the problem of study participants with uncertain residential locations.
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This study is motivated by an analysis of the effects of fine particulate matter on preterm birth
and low birth weight in southern Georgia. Figure 1 shows the 24 counties in the study domain as
well as the 177 census tracts in these mostly rural counties. While the majority of air pollution and
health studies have been conducted in urban communities, there is a growing interest to examine the
effects of air pollution in rural communities. This is because rural communities often have a different
susceptible population composition and are exposed to a different pollution mixture. In our dataset,
several predictors are known at the census tract level, including the variable of interest, fine
particulate matter exposure, and the tract’s median income. The county of residence is known for
all mothers; however, for 9.7% of the mothers in the study, the census tract of residence is unknown
(ranging by county from 2.7% to 57.1%). This uncertainty in the spatial location poses challenges in
the health model, as it is not clear how to assign exposure to these mothers or how to model
variability in risk across tracts. The ability to utilize health data with uncertain residential
location is particularly important in this setting because missing geocodes are most prevalent in
rural regions, which have considerably smaller sample size compared to urban communities.

There is an extensive literature on missing data methodology, for example, Little and Rubin3 and
Enders.4 However, relatively few missing data methods are available that are specifically tailored for
spatial data. Recently, methods for preferential sampling have been developed for cases where the
locations of the observations are selected in a way that depends on spatial distribution of the
response.5,6 In the models for these data, the locations are modeled jointly with the response.
Although the spatial locations are modeled statistically, unlike our application the datasets
considered in preferential sampling do not have missing values. In a similar work, Reich and
Bandyopadhyay7 model spatial data with predefined measurement locations, but with missing
responses. In this approach, the location of missing responses are allowed to depend on the true
value of the spatial process being measured. The situation addressed here differs from Reich and
Bandyopadhyay7 in that the location of the observations is missing, but not the response.
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Figure 1. Plot of the counties and census tracts in southern Georgia that constitute the study domain.

(a) preterm birth rate and (b) proportion of missing tracts by county.

The white areas indicate tracts with no births during the study period.
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Most similar to our method is that of Cressie and Kornak,8 who consider the case of a continuous
spatial domain and discuss the effects of adjusting for measurement error in the sampling locations
in the usual geostatical/kriging setup. Our case is different in that we are dealing with areal data, and
thus, the missing locations are restricted to a finite set of indices, and we use covariates to inform
about the missing data process.

In this article, we propose a hierarchical Bayesian approach that accounts for uncertainty in the
residential location of the study participants. We treat the missing locations as unknown random
variables in the Bayesian model. By modeling these data hierarchically, we exploit all available
information to inform about the missing locations, including the mother’s characteristics (e.g.
race and martial status), census information (e.g. the percent married and racial composition of
the census tracts), and the proportion of missing data in each census tract. By modeling the data
using Bayesian methods, uncertainty about the missing locations is naturally propagated
throughout the model, including the posteriors of the parameter relating fine particulate matter
with the health response, which is the primary interest. The proposed approach also has the
advantage of being a relatively straightforward addition to standard computational algorithms
used for Bayesian spatial epidemiology models. In particular, it can be implemented using the
popular software OpenBUGS.

The remainder of the article proceeds as follows. Section 2 describes the motivating data. The
statistical model and corresponding computational details are given in Sections 3 through 5. In
Section 6, we conduct a simulation study to illustrate the benefits of the proposed approach
compared to the standard method. The method is applied to Georgia birth data in Section 7.
Section 8 concludes.

2 Description of the Georgia birth data

Birth record data were obtained from the Office of Health Indicators for Planning, Georgia Division
of Public Health. The study region consists of 24 counties (177 census tracts) located in southeastern
Georgia (Figure 1). We considered only singleton births without structural birth defects conceived
from the period 1 January 2002 to 31 December 2005. Gestational age was defined as the number of
completed weeks between the reported date of last menstrual period and the date of birth. We
removed records with birth weight less than 400 g and records with gestational age less than 26
weeks or greater than 44 weeks. We restricted the analysis to non-Hispanic white and non-Hispanic
black mothers between the age of 15 and 44. The data are summarized in Table 1.

Daily ambient concentrations of fine particulate matter (PM2.5) were obtained from the
Statistically Fused Air Quality9 database (FSD) available at the EPA website, http://
www.epa.gov/heasd/sources/projects/CDC/index.html. The FSD database contains predicted daily
PM2.5 concentrations over contiguous 12� 12 km2 grid cells. The predictions are based on a
Bayesian space–time hierarchical model that combines (1) observed PM2.5 levels from the
monitoring network and (2) deterministic outputs from the Models-3/Community Multiscale Air
Quality model. To account for spatial misalignment between the grid cells and census tract
boundaries, we first calculated the proportion of the tract area that fall within each FSD grid
cell. Then, daily tract-level values were obtained by taking a weighted average.

The following tract-level population statistics were obtained from Census 2000 for females
between the age of 15 and 44: total population count, proportion of black race, and the mean
and SD of the age distribution. The median personal income in 1999 and the proportion
who were married were also obtained for females, without the age restriction, due to limited
census data.
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3 Hierarchical model for missing spatial locations

Let Yi be the binary indicator of low birth weight or preterm birth for birth i¼ 1, . . . , n and
si2 {1, . . . , N} the index of the residential region (e.g. census tract) for observation i. We use the
binary regression model

g PðYi ¼ 1Þ½ � ¼ �ðsiÞ þ XT
i cþWðsiÞ

Txþ ZiðsiÞ
Tb ð1Þ

where g is a link function (e.g. logit or probit), a¼ [a(1), . . . ,a(N)]T the spatial random effects to
control for unmeasured spatial baseline risks, and c¼ (�1, . . . , �p)

T, x¼ (!1, . . . ,!w)
T, and

b¼ (�1, . . . , �q)
T the fixed effects. We separate the predictors into three types: Xi are descriptions

of the ith birth and are known even in the absence of si (e.g. the mother’s age or education
attainment), W(si) descriptions of the mother’s residential region (e.g. the tract’s median income)
and are the same for all mothers in region si, and Zi(si) covariates that depend on the mother’s region
and vary for mothers in region si (e.g. the average PM2.5 concentration in region si over mother i’s
first trimester).

Our focus is to develop a statistical model for the case where a significant proportion of the
residential locations are missing. Let �i be the binary indicator of a missing value. For the majority of
observations, GIS calculates si accurately and thus �i¼ 0. For some observations, GIS is unable to
specify si and thus �i¼ 1. Fortunately, in most such cases, we are able to place si into a subset of
indices Si� {1, . . . , N}, e.g. Si may be the indices of the census tracts within a county if the mother’s

Table 1. Summary statistics of the Georgia birth data.

Missing tract-level geocode

No Yes

(N¼ 40,963) (N¼ 4391)

Preterm birth (%) 11.3 11.2

Low birth weight (%) 6.9 7.1

Female infant (%) 49.0 50.3

Married (%) 57.4 55.0

Tobacco use (%) 11.8 14.4

Maternal age

Mean 25.5 24.8

SD 5.7 5.5

Mother’s race (%)

Black 35.0 27.7

White 65.0 72.3

Mother’s education (%)

Some college or higher 43.9 31.7

High school or lower 56.1 68.3

Conception season (%)

March–May 25.1 25.5

June–August 23.9 23.6

September–November 25.4 25.2

December–February 25.6 25.7
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residential county can be obtained directly from the birth certificate or by geocoding using ZIP code.
Clearly, this complicates the spatial model, as it is unclear how to assign these observations a spatial
random effect. This uncertainty also affects the regression portion of the model, since some of the
predictors depend on si.

We account for uncertainty in the residential region using Bayesian modeling. The spatial index si
is treated as an unknown parameter in the hierarchical model. To exploit all available information
that can be used to impute the missing locations, we specify the joint distribution of all data for
observation i, [Yi, �i, Xi, W, Zi, si]. To specify the model, without loss of generality, we define the
joint distribution as the product of three conditional distributions

½Yi, �i,Xi,Zi, si� ¼ ½Yi, �ijXi,W,Zi, si�½Xi,W,Zijsi�½si� ð2Þ

As is often the case in missing data modeling, assumptions are required about the missing data
mechanism. A key assumption in our analysis is that given the spatial location and the predictors,
the birth outcome is independent of the missing data indictor, i.e.

½Yi, �ijXi,W,Zi, si� ¼ ½YijXi,W,Zi, si�½�ijXi,W,Zi, si� ð3Þ

This seems reasonable in our setting because many GIS errors are caused by unmatched addresses in
geocoding, for example, due to missing street numbers, and many variables known to be associated
with coding errors10 are provided by the birth records and included in Xi.

The models for the three conditional distributions in equation (2) are described below. The model
for Yi W Xi, W, Zi, si is given by equation (1). A flexible model for the missing data mechanism [�i W Xi,
W, Zi, si] is

g Pð�i ¼ 1jXi,W,Zi, siÞ½ � ¼ aðsiÞ þ XT
i bþWðsiÞ

Tc ð4Þ

where a¼ [a(1), . . . , a(N)]T are spatial random effects and b and c regression parameters. We exclude
time-varying coefficients Zi from this model, since it seems unreasonable that GIS success rate
depends on time and is correlated with covariates such as ambient air pollution.

In some cases, there may be prior information about the GIS success rate in each region which
could be incorporated in the prior for a. However, considerable effort is required to assess GIS error
rate, especially for a large study region.11 In the absence of prior information, it will be difficult to
estimate the spatial random effects a. Therefore, to avoid identifiability issues, we omit these random
effects from the model, giving

g Pð�i ¼ 1jXi,W, siÞ½ � ¼ XT
i bþWðsiÞ

Tc ð5Þ

This probability depends on si through W(si) and therefore helps impute the missing indices. Also,
intuitively, the data provide information about c by comparing the proportion of missing tracts in
each county with the average W over census tracts in the county. For these reasons, we select
equation (5) as the missing data model in Section 7.

Next, we describe the model for [Xi,W, Zi Wsi]. The spatial covariateW is considered fixed and thus
not modeled stochastically. For Georgia data, there are no missing values or uncertainty in Xi.
However, it is still important to model their distribution given si because this provides information
to impute missing census tracts. For example, a married mother is more likely to reside in a census
tract with high proportion of married women. Therefore, a model for the proportion of married
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women in each census tract is needed so that it can be combined with maternal information to
help impute the missing census tract indicators. The predictors Xi are a mix of continuous and
binary variables. If the jth covariate, Xji, is continuous, we model Xji Wsi � N½�jðsiÞ, �

2
j ðsiÞ�; if Xji is

binary, we model P(Xji¼ 1W si)¼�j(si). In our data, there is a single exposure (i.e. q¼ 1), which is
modeled as Zi W si � N½�0iðsiÞ, �

2
0iðsiÞ�. If the exposure is known exactly in each census tract, then

�20iðsiÞ ¼ 0 and �0i(si) is the exposure for tract si. In most air pollution studies, there is uncertainty in
the exposure in each tract due to measurement error and incomplete sampling. Our approach in
dealing with the uncertainty via priors for �ji and �ji is described in Section 4. It is also
straightforward to treat [Xi W si] as a multinomial distribution where each outcome represents a
unique strata of Xi. This is particularly useful when the prior is derived from census tables of
several variables.

The third component of equation (2) is the prior of the residential location. We assume that
100�j% of the mother’s reside in region j, with

PN
j¼1 �j ¼ 1. For partially observed locations

restricted to si2Si, the conditional prior is Prob(si ¼ j jsi 2 SiÞ ¼ �j=ð
P

k2Si
�kÞ. The probabilities

(�1, . . . , �N) may be fixed based on census data or given prior to account for uncertainty in
population density.

4 Prior distributions

Spatial random effects a in equation (1) are modeled using a conditionally autoregressive (CAR)
model.12 The CAR model can be defined by its full conditional distributions

�jj�l for all l 6¼ j � N �þ
	

mj

X
l�j

ð�l � �Þ,

2

mj

" #
ð6Þ

where l � j indicates that regions l and j are adjacent and mj is the number of regions that are
adjacent to region j. The CAR prior has three parameters: � is the location, 
2 controls the variance,
and 	2 [0, 1] controls the degree of spatial dependence. Combining these full conditionals gives a
multivariate normal joint distribution for a with mean (�, . . . , �)T and covariance 
2(M� 	 D)�1,
where M is the diagonal matrix with diagonal elements {m1, . . . , mN}, D the adjacency matrix with
(j, l) element equal to I(j� l), and I the binary indicator function. We denote this model a � CAR(�,

, 	). For the data analysis in Section 7, we fix 	¼ 1, which gives an improper intrinsic prior. For
simulated data in Section 6, we fixed 	¼ 0.9, since it is not possible to simulate data from the
improper model with 	¼ 1. To complete the health model, we specify uninformative priors
�, �j,!j,�j

iid
� N(0, 102) and 
�2� gamma(0.1, 0.1). Similarly, the prior for the missing data

parameters are bj, cj�N(0, 102).
The prior mean and variance of the air pollution exposure, �0i and �0i, are provided by the FSD

database described in Section 2. Although there is substantial variation in the daily exposures, the
uncertainty is negligible after averaging over the entire first trimester and is therefore ignored by
setting �0¼ 0. The remaining values of �j, �j, and �1, . . . , �N are fixed based on census data.

5 Computational details

Although it would be straightforward to implement in standard software such as OpenBUGS,13

we perform Markov chain Monte Carlo (MCMC) sampling using R.14 We use a probit
link g(x)¼�(x), where � is the standard normal distribution function, for both the health
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model (1) and missing data model (5). Therefore, we introduce two auxiliary variables15 for each
subject, Ui and Vi, with

Ui � N½�ðsiÞ þ XT
i cþWðsiÞ

Txþ ZiðsiÞ
Tb, 1�

Vi � N½XT
i bþWðsiÞ

Tc, 1� ð7Þ

The auxiliary variables relate to the responses by Yi¼ I(Ui> 0) and �i¼ I(Vi> 0). Marginalizing over
the auxiliary variables gives the desired probabilities in equations (1) and (5). After introducing these
latent variables, all model parameters are conjugate, and therefore, Gibbs sampling is used to
generate samples from the posterior distribution.

Most of the full conditionals needed for Gibbs sampling follow from standard conjugacy
relationships. A few parameters have non-standard full conditionals, which are specified below.
The auxiliary variables have truncated normal full conditionals

Uijrest � TNDðYiÞ½�ðsiÞ þ XT
i cþWðsiÞ

Txþ ZiðsiÞ
Tb, 1�

Vijrest � TNDð�iÞ½X
T
i bþWðsiÞ

Tc, 1�: ð8Þ

where the truncation region is D(Y)¼ [0, 1] if Y¼ 1 and D(Y)¼ [�1, 0] if Y¼ 0. Conditioned on
the latent variables in equation (7) and assuming Gaussian priors, the full conditionals of a, c, x, b, b,
and c follow from the usual normal/normal conjugacy relationship and are thus omitted. The CAR
variance 
2 has the standard gamma full conditional from normal/gamma conjugacy and is omitted.

The final full conditional needed for the Gibbs sampler is for the missing location indices si for
observations with �i¼ 1. The full conditional is

Pðsi ¼ l jrestÞ ¼
�il�jIðl 2 SiÞPN

k¼1 �ik�kIðk 2 SiÞ
where

�il ¼ �½Uij�ðl Þ þ XT
i cþWðl ÞTxþ Ziðl Þ

Tb, 1� � �½VijX
T
i bþWðl ÞTc, 1�

�
Yp1
j¼1

�½Xijj�jðl Þ, �
2
j ðl Þ� �

Yp
j¼p1þ1

�jðl Þ
Xij ½1� �jðl Þ�

1�Xij ð9Þ

The covariates are ordered so that the first p1 covariates in Xi¼ (Xi1, . . . , Xip) are Gaussian and the
remaining p� p1 are binary, and �(yWm, s) is the N(m, s2) density function.

For simulated data in Section 6, we generate 10,000 samples and discard the first 1000 as burn-in.
For the data analysis in Section 7, we generate 25,000 samples and discard the first 10,000 as burn-in.
Convergence is monitored using trace plots of several representative parameters. We find that
convergence is almost immediate for this model.

6 Simulation study

The data are simulated on a 6� 6 regular grid of N¼ 36 census tracts. The tracts are partitioned into
a 3� 3 grid of counties, as shown in Figure 2. Mothers’ census tracts are randomly assigned with
equal probability. The county is known for each mother, but the census tract is missing with
probability �. In addition to air pollution exposure, there is a single (p¼ 1) binary predictor Xi,
which is known for all mothers. We vary the mean of the predictor by alternating columns in
order to allow contrast in prevalence within a particular county. The predictor is generated as
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XiWsi � Bernoulli(�X) for si in even numbered columns (Figure 2) and XiWsi � Bernoulli(1��X) for si
in odd numbered columns; we assume �X is known to replicate known census information. For each
mother, we randomly draw an exposure for each census tract, Zi ¼ ½Zið1Þ, . . . , ,ZiðNÞ�

T iid
�

CAR(0,1,	z). For each simulated dataset, the spatial random effects are drawn as a¼ [a(1), . . . ,
a(N)]T � CAR(�, �2, 	). The responses are then generated as

PðYi ¼ 1Þ ¼ � �ðsiÞ þ Xi!þ ZiðsiÞ�½ � ð10Þ

Each simulated dataset has n¼ 1000, !¼ 0.5, �¼� 1.0, �¼ 0.1, and 	¼ 0.9. For simplicity, we do
not include spatial covariate W(s). For each simulated dataset, we fit three models:

(1) Complete case (CC): discard all observations with a missing census tract.
(2) Spatial uncertainty (SU): treat the missing census tracts as unknown parameters as described

above.
(3) Oracle (O): use all observations as if we knew the missing census tracts.

Model 1 is the simplest model which ignores uncertainty in the spatial locations by removing all
problematic observations. Model 2 is our proposed approach. The final model cannot be fit to real
data because it uses information that is not known to the analyst. This is included as a reference to
gage the effectiveness of the data imputation method.

We take as the base case for the simulation �¼ 0.2, �X¼ 0.3, �¼ 0.5, and 	z¼ 0.9. We then
simulate data for several designs by varying these four factors. For each design we generate 200
datasets. Figure 3 plots root mean squared error (RMSE) for �, averaged over the simulated dataset.
We also computed the empirical coverage probabilities. They were at or above the nominal level for
all models and simulation designs, and therefore, we do not present them here.

As expected, the RMSE of the SU model is between the RMSE of the CC and O models for all
settings. The improvement of the SU model compared to the usual CC model is highly dependent on
the percent missing. The relative MSE of the SU to the CC model varies from (0.053/0.056)2¼ 0.941
with �¼ 0.1 to (0.053/0.069)2¼ 0.700 with �¼ 0.4. Increased variability in the mean of the
covariate across census tracts (i.e. small �X) improves the ability of the model to impute the

Figure 2. Plot of the census tracts for the simulation study.

Shading corresponds to the tract’s county.
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missing census tracts. The average (over missing observation and dataset) posterior probability on
the correct tract increases from 0.26 with �X¼ 0.5 to 0.43 with �X¼ 0.05. Surprisingly, this does not
translate into improved RMSE for �, as the relative MSE is fairly constant for all �X.

The SU model improves MSE for moderate signal with �¼ 0.25. However, for a very strong signal,
the CC model is nearly as effective as the SU model. Finally, all methods give smaller MSE when the
spatial dependence parameter for the air pollution exposure, 	Z, increases. The SU model becomes
increasingly efficient as the dependence increases. The relative MSE of the SU to the CC model varies
from (0.058/0.066)2¼ 0.900 with 	Z¼ 0.80 to (0.038/0.043)2¼ 0.857 with 	Z¼ 0.99. This is because
uncertainty in the census tract is less problematic when the census tracts have similar exposures.
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Figure 3. Simulation study results.

RMSE is plotted by the proportion of missing data (�), the mean of the covariate in the even numbered columns (�X),

the exposure effect �, and the spatial dependence parameter of the air pollution exposure (	z). The Monte Carlo

standard error is between 0.0028 and 0.0056 for all RMSE estimates.

RMSE: root mean square error.
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7 Analysis of Georgia birth data

We examined the associations between exposure to ambient PM2.5 during the first trimester and the
risk of low birth weight (less than 2500g) and preterm birth (less than 37 gestational week) separately
via a spatial probit regression model. The total study population is 45,354 births and the raw
prevalence was 11.3% for preterm birth and 6.9% for low birth weight. First trimester exposure
was defined as the average daily PM2.5 concentrations during the first 13 weeks of pregnancy. The
model included the following confounders from the birth records: maternal age, indicator for race,
indicator for infant sex, indicator for marital status (married or unmarried), and indicators for some
college or higher and self-reported tobacco use during pregnancy. To control for unmeasured
temporal confounders, the model also included: (a) indicators for the season of conception (spring:
March–May, summer: June–August, autumn: September–November, winter: December–February);
and (b) a smooth function of conception date modeled using natural cubic splines with four degrees of
freedom. To control for spatial confounders, we included tract-level median personal income from
Census 2000 and tract-specific spatial random intercepts via the CAR specification.

Table 2 summarizes the posteriors of the coefficients in the health and missing-tract models. Results
are given for the SU model and CC models defined in Section 6. Unmarried, black mothers without
college education and with tobacco use have a higher risk of both preterm birth and low birth weight.
Also, older mothers are at higher risk of preterm birth, and female babies are at higher risk of low

Table 2. Posterior mean (SD) for the Georgia birth outcomes analysis.

Preterm birth Low birth weight

CC SU CC SU

(a) Health model

PM2.5 �0.0005 (0.0053) 0.0022 (0.0056) �0.0043 (0.0060) �0.0034 (0.0057)

Age 0.005 (0.002) 0.005 (0.002) 0.002 (0.002) 0.002 (0.002)

Married �0.075 (0.021) �0.074 (0.019) �0.102 (0.024) �0.105 (0.022)

Black 0.224 (0.020) 0.218 (0.019) 0.385 (0.023) 0.385 (0.022)

Female infant �0.023 (0.016) �0.028 (0.016) 0.159 (0.020) 0.161 (0.019)

Tobacco use 0.181 (0.025) 0.189 (0.024) 0.367 (0.028) 0.380 (0.026)

Education �0.084 (0.019) �0.080 (0.018) �0.093 (0.023) �0.090 (0.022)

Spring 0.057 (0.024) 0.054 (0.022) 0.044 (0.028) 0.035 (0.026)

Summer 0.036 (0.024) 0.036 (0.023) 0.019 (0.028) 0.005 (0.027)

Fall 0.040 (0.024) 0.032 (0.023) 0.017 (0.028) 0.009 (0.026)

Median income 0.027 (0.032) 0.033 (0.031) �0.035 (0.035) �0.028 (0.032)

(b) Missing tract model

Mother’s age 0.002 (0.002) 0.002 (0.002)

Married �0.017 (0.020) �0.016 (0.020)

Black �0.318 (0.021) �0.317 (0.021)

Female infant 0.020 (0.017) 0.021 (0.017)

Tobacco use �0.009 (0.025) �0.009 (0.025)

Education �0.183 (0.019) �0.183 (0.019)

Median income �0.831 (0.034) �0.803 (0.034)

CC: complete case; SU: spatial uncertainity.

Results are given for separate analysis of preterm birth and low birth weight, and for CC and SU models.
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birth weight. Based on these data, there is no statistically significant relationship between PM2.5 and
either low birth weight or preterm birth.

The effect estimates are similar for both the SU and CC models. As expected, the posterior SD is
smaller for the most parameters under the SU model compared to the CC model. For the confounding
predictors (age–education in Table 2) for preterm birth, the ratio of posterior variance for the CC
compared to SU model ranges from (0.0199/0.0192)2¼ 1.07 for maternal race to (0.0205/
0.0191)2¼ 1.15 for maternal marital status. For low birth weight, the ratio of posterior variances
ranges from 1.00 for maternal age to (0.0230/0.0215)2¼ 1.14 for maternal education. These
predictors are known for all observations, even those with missing census tracts, and so, the SU
model provides smaller variance due to the larger sample size. Curiously, the posterior SD of the
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Figure 4. Summary of the spatial random effects a for the preterm birth analysis. (a) posterior mean; (b) posterion

SD; and (c) relative variance of CC versus SU.

Panels (a) and (b) plot the posterior mean and SD of a for the SU model and panel (c) plots the ratio of posterior

variance for the CC model relative to the SU model. CC: complete case; SU: spatial uncertainity.
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PM2.5 effect for preterm birth is larger for the SU than the CC model. This may be because the
increased sample size for the SU is offset by uncertainty in the PM2.5 predictor.

The spatial random effect estimates in Figure 4 show considerable spatial variation, with
significantly lower risk in the southeast portion of the spatial domain. Figure 4(c) plots the ratio
of posterior variance from the CC to the SU model. As with the fixed effects, the variance of the
random effects is considerably smaller for the SU model.

There are several statistically significant predictors of the missing census tracts (Table 2). The
results are nearly identical for preterm birth of low birth weight because the majority of information
for these parameters comes from the regression of the missing data indicators and covariates, and
these are the same for both health responses. White mothers without college education and in tracts
with a low median income are more likely to have missing tract information. This provides
information about the missing census tract, as does the mother’s covariate information. Figure 5
shows the posterior distribution of the missing tract index for each mother from Appling County.
For all mothers, the probability for tract 13001950400 is small, since this tract has the smallest
population (9% of the county’s population). The posterior probability for tract 13001950200 varies
dramatically across mothers. The main driver of the probability is the mother’s race and marital
status; of the five tracts in Appling County, this tract has the highest proportion of black residents
(50.5%, no other tract exceeds 25%) and lowest proportion of married mothers (59.3%, all other
tracts exceed 66%).

8 Discussion

In this article, we develop a hierarchical Bayesian model which incorporates uncertainty about
the spatial location of the study participants. The method is straightforward to implement in
standard MCMC algorithms. We show via simulation that properly accounting for SU can lead
to a substantial improvement in parameter estimation over the standard approach of discarding
incomplete observations. The method is then applied to a study of the association between fine
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Figure 5. Posterior distribution from the preterm birth analysis for the census tract index of each mother with a

missing census tract from Appling County.

Each set of five connected points represents the posterior distribution of si for one mother.
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particulate matter and birth outcomes in Georgia. Although this analysis did not reveal a
statistically significant association, accounting for SU reduced the posterior variance of the
coefficients by as much as 15%. Our simulation study suggests that reductions in variance will be
even larger for studies with more missing spatial information. For this large study where the CC
model already gives small standard errors, the credible sets that do or do not include zero are the
same for both the CC and SU models. However, in more smaller studies, a 15% reduction in
posterior variance could reveal new environmental factors relating to birth outcomes and lead to
public health initiatives to improve birth outcomes.

As with many approaches to missing data problems, our analysis relies on strong assumptions. In
particular, we are assuming that after accounting for covariate effects, accurate recording of the
spatial location is independent of the response. This seems reasonable in our setting, but this
assumption should be carefully scrutinized in future applications. Technically, the more
complicated case of missing spatial locations depending on the response is still considered missing
at random, and therefore, it may be possible to include the response in the logistic regression model
for the missing data indicator. This is an area of future work.
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