Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published online September 5, 2019

Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review

Abstract

Optical emission of laser-produced plasmas from solids, liquids, and gases, from their fundamentals to their potential applications, has been comprehensively reported in multiple research manuscripts, reviews, and books. There are nevertheless enough serious unanswered issues and questions still present on what at first sight seemed to be much easier, the laser-induced breakdown spectroscopy (LIBS) of organic compounds. Ideally, for all organic molecules, one would expect homologous emission spectra, differing only in the presence or absence of signals associated to the containing elements and their intensity relative to their content. Yet, the reality is much more complex. In laser-induced plasmas of organic compounds, a broad variety of species may be formed depending on the irradiation parameters. Furthermore, there is not a uniform breakage for all the molecules constituting the ablated mass. At once, the plasma is a dynamic entity per se, which implies that the spatial distribution of each species in the source plasma is different. In addition, multiple circumstances and mechanisms may contribute to the extinction of some species and the formation of new ones. Thus, the surrounding atmosphere where the plasma evolves and the time elapsed from its formation also have a strong influence on the spectral signature gathered. In essence, any change in any of the variables involved in the cycle of an organic plasma, from those causing its formation to those governing its expansion, defines a new scenario that lead to a different LIBS spectrum for a same organic compound. The present paper reviews the common emitting species populating the laser plasmas of organic compounds, the routes to their formation, mostly those related to the production of diatomic radicals, the dynamics of such species, in space and time, and the physical parameters that they confer to the plasma. Concurrently, the influence that the structures of the molecular solids and the set of excitation variables may exert on the optical emissions observed is also discussed. Finally, some details on the modeling of organic plasmas are provided.

Get full access to this article

View all access and purchase options for this article.

References

1. Baudelet M., Smith B.W. “The First Years of Laser-Induced Breakdown Spectroscopy”. J. Anal. At. Spectrom 2013; 28(5): 624–629.
2. Fortes F.J., Moros J., Lucena P., et al.“Laser-Induced Breakdown Spectroscopy”. Anal. Chem 2013; 85(2): 640–669.
3. Dacey G.C. “Optical Masers in Science and Technology: Advances in the Control of Light Waves Give Promise of Important Applications in Science and Technology”. Science 1962; 135(3498): 71–74.
4. Boland B.C., Irons F.E., McWhirter R.W.P. “A Spectroscopic Study of the Plasma Generated by a Laser from Polyethylene”. J. Phys. B At. Mol. Phys 1968; 1(6): 1180–1191.
5. Robinson J.W., Woodward C., Barnes H.M. “Detection of Gaseous Organic Compounds”. Anal. Chim. Acta 1968; 43: 119–128.
6. Srinivasan R., Braren B. “Ablative Photodecomposition of Polymer Films by Pulsed Far-Ultraviolet (193 nm) Laser Radiation: Dependence of Etch Depth on Experimental Conditions”. J. Polym. Sci. A1 1984; 22(10): 2601–2609.
7. Rohlfing E.A. “Optical Emission Studies of Atomic, Molecular, and Particulate Carbon Produced from a Laser Vaporization Cluster Source”. J. Chem. Phys89(10): 6103–6112.
8. Scattergood T.W., McKay C.P., Borucki W.J., et al.“Production of Organic Compounds in Plasmas: A Comparison among Electric Sparks, Laser-Induced Plasmas, and UV Light”. Icarus 1989; 81(2): 413–428.
9. Chen X., Mazumder J. “Emission Spectroscopy during Excimer Laser Ablation of Graphite”. Appl. Phys. Lett 1990; 57(21): 2178–2180.
10. Scheibe H.J., Siemroth P., Schöneich B., et al.“Diamond-Like Carbon Film Preparation by Laser Arc”. Surf. Coat. Tech 1992; 52(2): 129–133.
11. Madison S.A., Keehn P.M. “Organic Chemistry by Infrared Lasers: 5. Pulsed CO2 Laser Induced Photoablative Decomposition of Biomass Materials”. J. Anal. Appl. Pyrolysis 1986; 9(3): 237–246.
12. Dyer P.E., Sidhu J. “Spectroscopic and Fast Photographic Studies of Excimer Laser Polymer Ablation”. J. Appl. Phys 1988; 64(9): 4657–4663.
13. C.H. Bamford, R.G. Compton, C.F.H. Tipper. Comprehensive Chemical Kinetics, Volume 3: The Formation and Decay of Excited Species. Amsterdam: Elsevier Science and Technology, 1969. 1st ed.
14. Delgado T., Vadillo J.M., Laserna J.J. “Laser-Induced Plasma Spectroscopy of Organic Compounds. Understanding Fragmentation Processes Using Ion-Photon Coincidence Measurements”. J. Anal. At. Spectrom 2013; 28(9): 1377–1384.
15. Delgado T., Vadillo J.M., Laserna J.J. “Single-Shot Isomers Discrimination in Condensed Phase by Laser-Induced Breakdown Spectrometry and Laser-Ionization Mass Spectrometry Using a Tailored Paired-Pulse Excitation Scheme”. J. Anal. At. Spectrom 2018; 33(9): 1469–1476.
16. Lambert D.L. “The Abundances of the Elements in the Solar Photosphere-VIII: Revised Abundances of Carbon, Nitrogen and Oxygen”. Mon. Not. R. Astron. Soc 1978; 182(2): 249–272.
17. C.E. Moore. Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions. Boca Raton, FL: CRC Press. Inc., 1993. 1st ed.
18. Sansonetti J.E., Martin W.C. “Handbook of Basic Atomic Spectroscopic Data”. J. Phys. Chem. Ref. Data 2005; 34(4): 1559–2259.
19. J. Reader, C.H. Corliss. “Line Spectra of the Elements”. In: D.R. Lide, editor. CRC Handbook of Chemistry and Physics. Boca Raton, FL, US: CRC Press. Inc., 2005. 86th ed.
20. National Institute of Standards and Technology (NIST). NIST Atomic Spectra Database Lines Form. http://physics.nist.gov/PhysRefData/ASD/lines_form.html [accessed 2 May 2019].
21. Zhigilei L.V., Kodali P.B.S., Garrison B.J. “On the Threshold Behavior in Laser Ablation of Organic Solids”. Chem. Phys. Letters 1997; 276(3–4): 269–273.
22. Striganov A.R., Sventitskii N.S. Tables of Spectral Lines of Neutral and Ionized Atoms, New York: Springer Sciences and Business Media, 1968.
23. Parigger C.G., Plemmons D.H., Oks E. “Balmer Series H-Beta Measurements in a Laser-Induced Hydrogen Plasma”. Appl. Opt 2003; 42(30): 5992–6000.
24. Idris N., Kurniawan H., Lie T.J., et al.“Characteristics of Hydrogen Emission in Laser Plasma Induced by Focusing Fundamental Q-sw YAG Laser on Solid Samples”. Jpn. J. Appl. Phys 2004; 43(7A): 4221–4228.
25. Kurniawan K.H., Lie T.J., Suliyanti M.M., et al.“Detection of Deuterium and Hydrogen Using Laser-Induced Helium Gas Plasma at Atmospheric Pressure”. J. Appl. Phys 2005; 98(9): 093302.
26. Parigger C.G., Dackman M., Hornkohl J.O. “Time Resolved Spectroscopy Measurements of Hydrogen Alpha, Beta, and Gamma Emissions”. Appl. Opt 2008; 47(31): G1–G6.
27. Parigger C.G., Oks E. “Laser-Induced Optical Breakdown in Methane: Diagnostic Using H-Gamma Line Broadening”. Int. J. Spectrosc 2010. Article 936385.
28. Parigger C.G. “Diagnostic of a Laser-Induced Optical Breakdown Based on Half-Width at Half Area of H-Alpha, H-Beta, and H-Gamma Lines”. Int. Rev. Atom. Mol. Spectrosc 2011; 1(2): 129–136.
29. Parigger C.G. “Atomic and Molecular Emissions in Laser-Induced Breakdown Spectroscopy”. Spectrochim. Acta, Part B 2013; 79–80: 4–16.
30. Swafford L.D., Surmick D.M., Witte M.J., et al.“Hydrogen Balmer Series Measurements in Laser-Induced Air Plasma”. J. Phys. Conf. Ser 2014; 548: 012049.
31. Kurniawan K.H., Tjia M.O., Kagawa K. “Review of Laser-Induced Plasma, its Mechanism, and Application to Quantitative Analysis of Hydrogen and Deuterium”. Appl. Spectrosc. Rev 2014; 49(5): 323–434.
32. Gautam G., Parigger C.G., Surmick D.M., et al.“Laser Plasma Diagnostics and Self-Absorption Measurements of the Hβ Balmer Series Line”. J. Quant. Spectrosc. Ra 2016; 170: 189–193.
33. Dequaire T., Meslin P.Y., Beck P., et al.“Analysis of Carbon and Nitrogen Signatures with Laser-Induced Breakdown Spectroscopy; the Quest for Organics under Mars-Like Conditions”. Spectrochim. Acta, Part B 2017; 131: 8–17.
34. Daiber J.W., Winans J.G. “Radiation from Laser-Heated Plasmas in Nitrogen and Argon”. J. Opt. Soc. Am 1968; 58(1): 76–80.
35. Camacho J.J., Santos M., Díaz L., et al.“Optical Emission Spectroscopy of Oxygen Plasma Induced by IR CO2 Pulsed Laser”. J. Phys. D Appl. Phys 2008; 41(21): 215206.
36. Wakelam V., Smith W.M., Herbst E., et al.“Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges”. Space Sci. Rev 2010; 156(1-4): 13–72.
37. Jackson W.M. “The Photochemical Formation of Cometary Radicals”. J. Photochem 1976; 5(2): 107–118.
38. J. Crovisier. “The Molecular Composition of Comets and its Interrelation with Other Small Bodies of the Solar System”. In: D. Lazzaro, S. Ferraz-Mello, J.A. Fernández, editors. Asteroids, Comets, Meteors: Proceedings of the 229th Symposium of the IAU Held in Buzios, Rio de Janeiro, Brasil, August 7–12, 2005. Cambridge: Cambridge University Press, 2006. Series 229, Pp. 133–152.
39. D. Despois, N. Biver, D. Bockelée-Morvan, et al. “Observations of Molecules in Comets”. In: D.C. Lis, G.A. Blake, E. Herbst, editors. Astrochemistry: Recent Successes and Current Challenges. Proc. Int. Astron. Union. Cambridge: Cambridge University Press, 2005. IAU Symposium and Colloquium Proceedings Series 231, Pp. 119–128.
40. Wilkinson P.G. “Diatomic Molecules of Astrophysical Interest: Ionization Potentials and Dissociation Energies”. Astrophys. J 1963; 138: 778–800.
41. Combi M.R., Delsemme A.H. “Neutral Cometary Atmospheres. V. C2 and CN in Comets”. Astrophys. J 1986; 308: 472–484.
42. Fray N., Bénilan Y., Cottin H., et al.“The Origin of the CN Radical in Comets: A Review from Observations and Models”. Planet. Space Sci 2005; 53(12): 1243–1262.
43. Tsang W., Lifshitz A. “Shock Tube Techniques in Chemical Kinetics”. Annu. Rev. Phys. Chem 1990; 41: 559–599.
44. W.C. Gardiner. “Shock Tube Studies of Combustion Chemistry”. In: K. Takayama, editor. Shock Waves. Berlin; Heidelberg: Springer-Verlag, 1992. Chap. 6, Pp. 49–60.
45. Rose S.J. “High-Power Laser-Produced Plasmas and Astrophysics”. Laser Part. Beams 1991; 9(04): 869–879.
46. Pearse R.W.B., Gaydon A.G. The Identification of Molecular Spectra, 4th ed. London, UK: Chapman and Hall, Ltd, 1976.
47. Van Orden A., Saykally R.J. “Small Carbon Clusters: Spectroscopy, Structure, and Energetics”. Chem. Rev 1998; 98(6): 2313–2358.
48. Wakisaka A., Sato H., Gaumet J.J., et al.“The Simplest Process in the Growth of Carbon Clusters: C2 Formation from C1 Following Laser Vaporization of Graphite”. J. Chem. Soc. Chem. Commun 1993; 0(1): 77–78.
49. Gottfried J.L., Klapötke T.M., Witkowski G. “Estimated Detonation Velocities for TKX-50, MAD-X1, BDNAPM, BTNPM, TKX-55, and DAAF Using the Laser–induced Air Shock from Energetic Materials Technique”. Propell. Explos. Pyrot 2017; 42(4): 353–359.
50. Swan W. “XXIX. On the Prismatic Spectra of the Flames of Compounds of Carbon and Hydrogen”. Earth. Env. Sci. Trans. R. Soc. Edinburgh 1857; 21(3): 411–429.
51. Lambert D.L., Danks A.C. “High-Resolution Spectra of C2 Swan Bands from Comet West 1976 VI”. Astrophys. J 1983; 268: 428–446.
52. Douay M., Nietmann R., Bernath P.F. “New Observations of the A1Πu-X1Σg+ Transition (Phillips System) of C2”. J. Mol. Spectrosc 1988; 131(2): 250–260.
53. Gaumet J.J., Wakisaka A., Shimizu Y., et al.“Energetics for Carbon Clusters Produced Directly by Laser Vaporization of Graphite: Dependence on Laser Power and Wavelength”. J. Chem. Soc. Faraday Trans 1993; 89(11): 1667–1670.
54. Wakisaka A., Gaumet J.J., Shimizu Y., et al.“Carbon Clusters Vaporized Directly from Graphite Through Laser Vaporization”. J. Chem. Soc. Chem. Commun 1993; 0(4): 347–348.
55. Sovová K., Dryahina K., Španěl P., et al.“A Study of the Composition of the Products of Laser-Induced Breakdown of Hexogen, Octogen, Pentrite and Trinitrotoluene Using Selected Ion Flow Tube Mass Spectrometry and UV-Vis Spectrometry”. Analyst 2010; 135(5): 1106–1114.
56. Harilal S.S., Issac R.C., Bindhu C.V., et al.“Spatial Analysis of C2 Band Emission from Laser Produced Plasma”. Plasma Sources Sci. Technol 1997; 6(3): 317–322.
57. Parigger C., Plemmons D.H., Hornkohl J.O., et al.“Spectroscopic Temperature Measurements in a Decaying Laser-Induced Plasma Using the C2 Swan System”. J. Quant. Spectrosc. Radiat. Transfer 1994; 52(6): 707–711.
58. Abdelli-Messaci S., Kerdja T., Bendib A., et al.“Emission Study of C2 and CN in Laser-Created Carbon Plasma under Nitrogen Environment”. J. Phys. D Appl. Phys 2002; 35(21): 2772–2778.
59. Hatem G., Colón C., Campos J. “Study of CN Emission from a Laser Induced Plasma of Graphite in Air”. Spectrochim. Acta 1993; 49A(4): 509–516.
60. Thareja R.K., Dwivedi R.K., Ebihara K. “Interaction of Ambient Nitrogen Gas and Laser Ablated Carbon Plume: Formation of CN”. Nucl. Instrum. Meth. B 2002; 192(3): 301–310.
61. Marenin I., Greene A.E. “The Synthetic Spectrum of the CN Red System and its Application to Stellar Spectra of Moderate Resolution”. Astrophys. J 1972; 177: 841–846.
62. Schoonveld L., Sundaram S. “New Rotational and Vibrational Analyses of CN Violet System”. Astrophys. J. Sup. Ser 1979; 41: 669–674.
63. Federman S.R., Danks A.C., Lambert D.L. “The CN Radical in Diffuse Interstellar Clouds”. Astrophys. J 1984; 287: 219–227.
64. Schulz R., Jehin E., Manfroid J., et al.“Isotopic Abundance in the CN Coma of Comets: Ten Years of Measurements”. Planet. Space Sci 2008; 56(13): 1713–1718.
65. Manfroid J., Jehin E., Hutsemékers D., et al.“The CN Isotopic Ratios in Comets”. Astron. Astrophys 2009; 503(2): 613–624.
66. Ram R.S., Bernath P.F. “Fourier Transform Emission Spectroscopy of the B2Σ+–X2Σ+ (Violet) System of 13C14N”. J. Mol. Spectrosc 2012; 274(1): 22–27.
67. Riascos H., Franco L.M., Pérez J.A. “Optical Spectroscopy of Emission from CN Plasma Formed by Laser Ablation”. Phys. Scr2008(T131): 014020.
68. Hornkohl J.O., Parigger C., Lewis J.W.L. “Temperature Measurements from CN Spectra in a Laser-Induced Plasma”. J. Quant. Spectrosc. Radiat. Transfer 1991; 46(5): 405–411.
69. Zelinger Z., Novotný M., Bulíř J., et al.“Laser Plasma Plume Kinetic Spectroscopy of the Nitrogen and Carbon Species”. Contrib. Plasm. Phys 2003; 43(7): 426–432.
70. Kushwaha A., Thareja R.K. “Dynamics of Laser-Ablated Carbon Plasma: Formation of C2 and CN”. Appl. Opt 2008; 47(31): G65–G71.
71. Acquaviva S., Caricato A.P., De Giorgi M.L., et al.“Evidence for CN in Spectroscopic Studies of Laser-Induced Plasma during Pulsed Irradiation of Graphite Targets in Nitrogen and Ammonia”. J. Phys. B At. Mol. Opt. Phys 1997; 30(19): 4405–4414.
72. Bernath P.F., Brazier C.R., Olsen T., et al.“Spectroscopy of the CH Free Radical”. J. Mol. Spectrosc 1991; 147(1): 16–26.
73. Zachwieja M. “New Investigations of the A2Δ–X2Π Band System in the CH Radical and a New Reduction of the Vibration-Rotation Spectrum of CH from the ATMOS Spectra”. J. Mol. Spectrosc 1995; 170(2): 285–309.
74. Kępa R., Para A., Rytel M., et al.“New Spectroscopic Analysis of the B2Σ–X2Π Band System of the CH Molecule”. J. Mol. Spectrosc 1996; 178(2): 189–193.
75. Kalemos A., Mavridis A., Metropoulos A. “An Accurate Description of the Ground and Excited States of CH”. J. Chem. Phys 1999; 111(21): 9536–9548.
76. Menningen K.L., Childs M.A., Toyoda H., et al.“CH3 and CH Densities in a Diamond Growth DC Discharge”. Contrib. Plasm. Phys 1995; 35(4-5): 359–373.
77. Carinhana D. Jr, Barreta L.G., Rocha C.J., et al.“Determination of Liquefied Petroleum Flame Temperatures Using Emission Spectroscopy”. J. Braz. Chem. Soc 2008; 19(7): 1326–1335.
78. Qian-Suo Y., Jun-Hao S., Nai-Yi Z. “Determination of Temperatures Using CH Radical Emission Spectroscopy”. Chinese Phys. Lett 2012; 29(10): 104707.
79. Solomon P.M., Klemperer W. “The Formation of Diatomic Molecules in Interstellar Clouds”. Astrophys. J 1972; 178: 389–422.
80. Smith Wm.H., Liszt H.S., Lutz B.L. “A Reevaluation of the Diatomic Processes Leading to CH and CH+ Formation in the Interstellar Medium”. Astrophys. J 1973; 183: 69–80.
81. Steimle T.C., Woodward D.R., Brown J.M. “The Lambda-Doubling Spectrum of 13CH, Studied by Microwave Optical Double Resonance”. J. Chem. Phys 1986; 85(3): 1276–1282.
82. Davidson S.A., Evenson K.M., Brown J.M. “The Far-Infrared Laser Magnetic Resonance Spectrum of the 13CH Radical”. J. Mol. Spectrosc 2004; 223(1): 20–30.
83. McCarthy M.C., Mohamed S., Brown J.M., et al.“Detection of Low-Frequency Lambda-Doublet Transitions of the Free 12CH and 13CH Radicals”. Proc. Natl. Acad. Sci. U. S. A 2006; 103(33): 12263–12268.
84. Brown J.M., Evenson K.M. “The Far-Infrared Laser Magnetic Resonance Spectrum of the CD Radical and Determination of Ground State Parameters”. J. Mol. Spectrosc 1989; 136(1): 68–85.
85. Zachwieja M., Szajna W., Hakalla R. “The A2Δ–X2Π Band System of the CD Radical”. J. Mol. Spectrosc 2012; 275: 53–60.
86. Wilson Wm.E. Jr. “A critical Review of the Gas-Phase Reaction Kinetics of the Hydroxyl Radical”. J. Phys. Chem. Ref. Data 1972; 1(2): 535–573.
87. Bass A.M., Garvin D. “Analysis of the Hydroxyl Radical Vibration Rotation Spectrum between 3900 Å and 11500 Å”. J. Mol. Spectrosc 1962; 9: 114–123.
88. Dieke G.H., Crosswhite H.M. “The Ultraviolet Bands of OH. Fundamental Data”. J. Quant. Spectrosc. Radiat. Transfer 1962; 2(2): 97–199.
89. Meinel I.A.B. “OH Emission Bands in the Spectrum of the Night Sky”. Astrophys. J 1950; 111: 555–564.
90. Cageao R.P., Ha Y.L., Jiang Y., et al.“Calculated Hydroxyl A2Σ→X2Π (0,0) Band Emission Rate Factors Applicable to Atmospheric Spectroscopy”. J. Quant. Spectrosc. Radial Transfer 1997; 57(5): 703–717.
91. Parigger C.G., Guan G., Hornkohl J.O. “Measurement and Analysis of OH Emission Spectra Following Laser-Induced Optical Breakdown in Air”. Appl. Optics 2003; 42(30): 5986–5991.
92. de Izarra G., Cormier J.-M. “New Methods to Determine Temperatures from UV OH Spectrum”. J. Phys. D Appl. Phys 2013; 46(10): 105503.
93. de Izarra C. “UV OH Spectrum Used as a Molecular Pyrometer”. J. Phys. D Appl. Phys 2000; 33(14): 1697–1704.
94. Serrano J., Moros J., Laserna J.J. “Exploring the Formation Routes of Diatomic Hydrogenated Radicals using Femtosecond Laser-Induced Breakdown Spectroscopy of Deuterated Molecular Solids”. J. Anal. At. Spectrom 2015; 30(11): 2343–2352.
95. Serrano J., Moros J., Laserna J.J. “Molecular Signatures in Femtosecond Laser-Induced Organic Plasmas: Comparison with Nanosecond Laser Ablation”. Phys. Chem. Chem. Phys 2016; 18(4): 2398–2408.
96. Haak H.K., Stuhl F. “ArF Excimer Laser Photolysis of Ammonia. Formation of NH and ND in the A3.PI. State”. J. Phys. Chem 1984; 88(11): 2201–2204.
97. Plemmons D.H., Parigger C., Lewis J.W.L., et al.“Analysis of Combined Spectra of NH and N2”. Appl. Optics 1998; 37(12): 2493–2498.
98. Chen Y.L., Lewis J.W.L., Parigger C. “Probability Distribution of Laser-Induced Breakdown and Ignition of Ammonia”. J. Quant. Spectrosc. Ra 2000; 66(1): 41–53.
99. Gilles A., Masanet J., Vermeil C. “Direct Determination of the NH b1Σ+→X3Σ Energy Difference”. Chem. Phys. Letters 1974; 25(3): 346–347.
100. Zetzsch C., Stuhl F. “Detection and Quenching of NH(b1Σ+) in the Pulsed Vacuum UV Photolysis of NH3”. Chem. Phys. Letters 1975; 33(2): 375–377.
101. Swings P., Elvey C.T., Babcock H.W. “The Spectrum of Comet Cunningham, 1940C”. Astrophys. J 1941; 94: 320–343.
102. Nemes L., Keszler A.M., Parigger C.G., et al.“The C3 Puzzle: Formation of and Spontaneous Emission from the C3 Radical in Carbon Plasma”. Internet Electron. J. Mol. Des 2006; 5(3): 150–167.
103. Ruiz H.M., Guzmán F., Favre M., et al.“Time- and Space-Resolved Spectroscopic Characterization of a Laser Carbon Plasma Plume in an Argon Background”. Plasma Sources Sci. Technol 2012; 21(3): 034014.
104. Nemes L., Keszler A.M., Parigger C.G., et al.“Spontaneous Emission from the C3 Radical in Carbon Plasma”. Appl. Optics 2007; 46(19): 4032–4040.
105. Sasaki K., Wakasaki T., Matsui S., et al.“Distributions of C2 and C3 Radical Densities in Laser-Ablation Carbon Plumes Measured by Laser-Induced Fluorescence Imaging Spectroscopy”. J. Appl. Phys 2002; 91(7): 4033–4039.
106. K. Sasaki. “Spectroscopic Studies on Laser-Produced Carbon Vapor”. In: L. Nemes, S. Irle, editors. Spectroscopy, Dynamics and Molecular Theory of Carbon Plasmas and Vapors. Advances in the Understanding of the Most Complex High-Temperature Elemental System. London, UK: World Scientific Publishing, 2011. Chap. 2, Pp. 55–76.
107. Parigger C.G., Hornkohl J.O., Nemes L. “Time-Resolved Spectroscopy Diagnostic of Laser-Induced Optical Breakdown”. Int. J. Spectrosc 2010. 2010: 593820.
108. Camacho J.J., Poyato J.M.L., Díaz L., et al.“Optical Emission Studies of Nitrogen Plasma Generated by IR CO2 Laser Pulses”. J. Phys. B At. Mol. Opt. Phys 2007; 40(24): 4573–4590.
109. Qayyum A., Zeb S., Naveed M.A., et al.“Optical Emission Spectroscopy of Ar–N2 Mixture Plasma”. J. Quant. Spectrosc. Ra 2007; 107(3): 361–371.
110. Rehman N.U., Masood A., Anjum Z., et al.“Optical Emission Spectroscopy of He–N2 Mixture Plasma. Radiation Effects and Defects in Solids”. Radiat. Eff. Defects Solids 2015; 170(7-8): 668–678.
111. Lofthus A., Krupenie P.H. “The Spectrum of Molecular Nitrogen”. J. Phys. Chem. Ref. Data 1977; 6(1): 113–307.
112. Camacho J.J., Díaz L., Cid J.P., et al.“Time-Resolved Spectroscopic Diagnostic of the CO2 Plasma Induced by a High-Power CO2 Pulsed Laser”. Spectrochim. Acta, Part B 2011; 66(9-10): 698–705.
113. Simeonsson J.B., Miziolek A.W. “Spectroscopic Studies of Laser-Produced Plasmas Formed in CO and CO2 Using 193, 266, 355, 532, and 1064 nm Laser Radiation”. Appl. Phys. B 1994; 59(1): 1–9.
114. Ochkin V.N., Kittell S. Spectroscopy of Low Temperature Plasma, Weinheim: Wiley-VCH Verlag GmbH, 2009.
115. Sharma M., Austin J.M., Glumac N.G., et al.“NO and OH Spectroscopic Vibrational Temperature Measurements in a Postshock Relaxation Region”. AIAA J 2010; 48(7): 1434–1443.
116. Hornkohl J.O., Fleischmann J.P., Surmick D.M., et al.“Emission Spectroscopy of Nitric Oxide in Laser-Induced Plasma”. J. Phys. Conf. Ser 2014; 548: 012040.
117. Anselment M., Smith R.S., Daykin E., et al.“Optical Emission Studies on Graphite in a Laser/Vaporization Supersonic Jet Cluster Source”. Chem. Phys. Lett 1987; 134(5): 444–449.
118. Harilal S.S., Issac R.C., Bindhu C.V., et al.“Temporal and Spatial Evolution of C2 in Laser Induced Plasma from Graphite Target”. J. Appl. Phys 1996; 80(6): 3561–3565.
119. Little C.E., Browne P.G. “Origin of the High-Pressure Bands of C2”. Chem. Phys. Lett 1987; 134(6): 560–564.
120. Dinescu G., Aldea E., De Giorgi M.L., et al.“Optical Emission Spectroscopy of Molecular Species in Plasma Induced by Laser Ablation of Carbon in Nitrogen”. Appl. Surf. Sci 1998; 127–129: 697–702.
121. Acquaviva S., De Giorgi M.L. “High-Resolution Investigations of C2 and CN Optical Emissions in Laser-Induced Plasmas During Graphite Ablation”. J. Phys. B At. Mol. Opt. Phys 2002; 35(4): 795–806.
122. Dong M., Lu J., Yao S., et al.“Experimental Study on the Characteristics of Molecular Emission Spectroscopy for the Analysis of Solid Materials Containing C and N”. Opt. Express 2011; 19(18): 17021–17029.
123. Delgado T., Vadillo J.M., Laserna J.J. “Primary and Recombined Emitting Species in Laser Induced Plasmas of Organic Explosives in Controlled Atmospheres”. J. Anal. At. Spectrom 2014; 29(9): 1675–1685.
124. Russo R.E., Bol’shakov A.A., Mao X., et al.“Laser Ablation Molecular Isotopic Spectrometry”. Spectrochim. Acta, Part B 2011; 66(2): 99–104.
125. Bol’shakov A.A., Mao X., Jain J., et al.“Laser Ablation Molecular Isotopic Spectrometry of Carbon Isotopes”. Spectrochim. Acta, Part B 2015; 113: 106–112.
126. Bol’shakov A.A., Mao X., González J.J., et al.“Laser Ablation Molecular Isotopic Spectrometry (LAMIS): Current State of the Art”. J. Anal. At. Spectrom 2016; 31(1): 119–134.
127. Dong M., Mao X., González J.J., et al.“Carbon Isotope Separation and Molecular Formation in Laser-Induced Plasmas by Laser Ablation Molecular Isotopic Spectrometry”. Anal. Chem 2013; 85(5): 2899–2906.
128. Dong M., Chan G.C.Y., Mao X., et al.“Elucidation of C2 and CN Formation Mechanisms in Laser-Induced Plasmas through Correlation Analysis of Carbon Isotopic Ratio”. Spectrochim. Acta, Part B 2014; 100: 62–69.
129. Glaus R., Riedel J., Gornushkin I. “Insight into the Formation of Molecular Species in Laser-Induced Plasma of Isotopically Labeled Organic Samples”. Anal. Chem 2015; 87(19): 10131–10137.
130. Padmaja G., Ravi Kumar A.V., Radhakrishnan P., et al.“Spatial and Temporal Analysis of Laser Induced Plasma from a Polymer Sample”. J. Phys. D Appl. Phys 1993; 26(1): 35–41.
131. Harilal S.S., Issac R.C., Bindhu C.V., et al.“Time Resolved Study of CN Band Emission from Plasma Generated by Laser Irradiation of Graphite”. Spectrochim. Acta, Part A 1997; 53(10): 1527–1536.
132. Neogi A., Mishra A., Thareja R.K. “Dynamics of Laser Produced Carbon Plasma Expanding in Low Pressure Ambient Atmosphere”. J. Appl. Phys 1998; 83(5): 2831–2834.
133. Harilal S.S. “Expansion Dynamics of Laser Ablated Carbon Plasma Plume in Helium Ambient”. Appl. Surf. Sci 2001; 172(1-2): 103–109.
134. Ruiz H.M., Guzmán F., Favre M., et al.“Plasma Species Dynamics in a Laser Produced Carbon Plasma Expanding in Low Pressure Neutral Gas Background”. J. Phys. Conf. Ser 2012; 370: 012008.
135. Baudelet M., Boueri M., Yu J., et al.“Time-Resolved Ultraviolet Laser-Induced Breakdown Spectroscopy for Organic Material Analysis”. Spectrochim. Acta, Part B 2007; 62(12): 1329–1334.
136. Boueri M., Baudelet M., Yu J., et al.“Early Stage Expansion and Time-Resolved Spectral Emission of Laser-Induced Plasma from Polymer”. Appl. Surf. Sci 2009; 255(24): 9566–9571.
137. Harilal S.S., Hassanein A., Polek M. “Late-Time Particle Emission from Laser-Produced Graphite Plasma”. J. Appl. Phys 2011; 110(5): 053301.
138. Harilal S.S., Issac R.C., Bindhu C.V., et al.“Emission Characteristics and Dynamics of C2 from Laser Produced Graphite Plasma”. J. Appl. Phys 1997; 81(8): 3637–3643.
139. Harilal S.S., Issac R.C., Bindhu C.V., et al.“Optical Emission Studies of C2 Species in Laser-Produced Plasma from Carbon”. J. Phys. D Appl. Phys 1997; 30(12): 1703–1709.
140. Vivien C., Hermann J., Perrone A., et al.“A Study of Molecule Formation During Laser Ablation of Graphite in Low-Pressure Nitrogen”. J. Phys. D Appl. Phys 1998; 31(10): 1263–1272.
141. Vivien C., Hermann J., Perrone A., et al.“A Study of Molecule Formation During Laser Ablation of Graphite in Low-Pressure Ammonia”. J. Phys. D Appl. Phys 1999; 32(4): 518–528.
142. Ikegami T., Ishibashi S., Yamagata Y., et al.“Spatial Distribution of Carbon Species in Laser Ablation of Graphite Target”. J. Vac. Sci. Technol. A 2001; 19(4): 1304–1307.
143. Yadav D., Gupta V., Thareja R.K. “Ground State C2 Density Measurement in Carbon Plume Using Laser-Induced Fluorescence Spectroscopy”. Spectrochim. Acta, Part B 2009; 64(10): 986–992.
144. Park S.M., Lee K.H. “Angular Distributions of C2 and CN Formed by Laser Ablation of Graphite in a Nitrogen Atmosphere”. Appl. Surf. Sci 2001; 178(1-4): 37–43.
145. Al-Shboul K.F., Harilal S.S., Hassanein A., et al.“Dynamics of C2 Formation in Laser-Produced Carbon Plasma in Helium Environment”. J. Appl. Phys 2011; 109(5): 053302-1–053302-6.
146. Al-Shboul K.F., Harilal S.S., Hassanein A. “Spatio-Temporal Mapping of Ablated Species in Ultrafast Laser-Produced Graphite Plasmas”. Appl. Phys. Lett 2012; 100(22): 221106–1–221106-4.
147. Mercadier L., Hermann J., Grisolia C., et al.“Plume Segregation Observed in Hydrogen and Deuterium-Containing Plasmas Produced by Laser Ablation of Carbon Fiber Tiles from a Fusion Reactor”. Spectrochim. Acta, Part B 2010; 65(8): 715–720.
148. Rumsby P.T., Paul J.W.M. “Temperature and Density of an Expanding Laser Produced Plasma”. Plasma Physics 1974; 16(3): 247–260.
149. Chen X., Mazumder J., Purohit A. “Optical Emission Diagnostics of Laser-Induced Plasma for Diamond-Like Film Deposition”. Appl. Phys. A 1991; 52(5): 328–334.
150. Aldea E., Caricato A.P., Dinescu G., et al.“Optical Emission Diagnostic of Laser-Induced Plasma During CNX Film Deposition”. Jpn. J. Appl. Phys 1997; 36(7): 4686–4689.
151. Parigger C., Plemmons D.H., Hornkohl J.O., et al.“Temperature Measurements from First-Negative N2+ Spectra Produced by Laser-Induced Multiphoton Ionization and Optical Breakdown of Nitrogen”. Appl. Optics 1995; 34(18): 3331–3335.
152. Harilal S.S., Bindhu C.V., Issac R.C., et al.“Electron Density and Temperature Measurements in a Laser Produced Carbon Plasma”. J. Appl. Phys 1997; 82(5): 2140–2146.
153. Park H.S., Nam S.H., Park S.M. “Optical Emission Studies of a Plume Produced by Laser Ablation of a Graphite Target in a Nitrogen Atmosphere”. Bull. Korean Chem. Soc 2004; 25(5): 620–624.
154. Rai S., Rai A.K., Thakur S.N. “Identification of Nitro-Compounds with LIBS”. Appl. Phys. B 2008; 91(3-4): 645–650.
155. Chaudhary K., Rosalan S., Aziz M.S., et al.“Laser-Induced Graphite Plasma Kinetic Spectroscopy under Different Ambient Pressures”. Chin. Phys. Lett 2015; 32(4): 043201-1–043201-5.
156. Wang J., Zheng P., Liu H., et al.“Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air”. Plasma Sci. Technol 2016; 18(11): 1123–1129.
157. Trautner S., Jasik J., Parigger C.G., et al.“Laser-Induced Optical Breakdown Spectroscopy of Polymer Materials Based on Evaluation of Molecular Emission Bands”. Spectrochim. Acta, Part A 2017; 174: 331–338.
158. Rusak D.A., Castle B.C., Smith B.W., et al.“Excitational, Vibrational, and Rotational Temperatures in Nd:YAG and XeCl Laser-Induced Plasmas”. Spectrochim. Acta, Part B 1997; 52(13): 1929–1935.
159. Acquaviva S., De Giorgi M.L. “Fast Photography of XeCl Laser-Induced Plasma of Graphite in Vacuum and in Nitrogen Atmosphere”. J. Phys. B At. Mol. Opt. Phys 2003; 36(2): 247–260.
160. Civiš M., Civiš S., Sovová K., et al.“Laser Ablation of FOX-7: Proposed Mechanism of Decomposition”. Anal. Chem 2011; 83(3): 1069–1077.
161. Camacho J.J., DÍaz L., Santos M., et al.“Optical Emission Spectroscopic Study of Plasma Plumes Generated by IR CO2 Pulsed Laser on Carbon Targets”. J. Phys. D Appl. Phys 2008; 41(10): 105201.
162. Anzano J.M., Gornushkin I.B., Smith B.W., et al.“Laser-Induced Plasma Spectroscopy for Plastic Identification”. Polym. Eng. Sci 2000; 40(11): 2423–2429.
163. Gondal M.A., Siddiqui M.N. “Identification of Different Kinds of Plastics Using Laser-Induced Breakdown Spectroscopy for Waste Management”. J. Environ. Sci. Heal. A 2007; 42(13): 1989–1997.
164. Munson C.A., De Lucia F.C. Jr, Piehler T., et al.“Investigation of Statistics Strategies for Improving the Discriminating Power of Laser-Induced Breakdown Spectroscopy for Chemical and Biological Warfare Agent Simulants”. Spectrochim. Acta, Part B 2005; 60(7–8): 1217–1224.
165. Fortes F.J., Ctvrtnícková T., Mateo M.P., et al.“Spectrochemical Study for the In Situ Detection of Oil Spill Residues Using Laser-Induced Breakdown Spectroscopy”. Anal. Chim. Acta 2010; 683(1): 52–57.
166. Cáceres J.O., Moncayo S., Rosales J.D., et al.“Application of Laser-Induced Breakdown Spectroscopy (LIBS) and Neural Networks to Olive Oils Analysis”. Appl. Spectrosc 2013; 67(9): 1064–1072.
167. Elnasharty I.Y., Kassem A.K., Sabsabi M., et al.“Diagnosis of Lubricating Oil by Evaluating Cyanide and Carbon Molecular Emission Lines in Laser Induced Breakdown Spectra”. Spectrochim. Acta, Part B 2011; 66(8): 588–593.
168. Serrano J., Cabalín L.M., Moros J., et al.“Potential of Laser-Induced Breakdown Spectroscopy for Discrimination of Nano-Sized Carbon Materials. Insights on the Optical Characterization of Graphene”. Spectrochim. Acta, Part B 2014; 97: 105–112.
169. Lucena P., Doña A., Tobaria L.M., et al.“New Challenges and Insights in the Detection and Spectral Identification of Organic Explosives by Laser Induced Breakdown Spectroscopy”. Spectrochim. Acta, Part B 2011; 66(1): 12–20.
170. López-Moreno C., Palanco S., De Lucia F. Jr, et al.“Test of a Stand-Off Laser-Induced Breakdown Spectroscopy Sensor for the Detection of Explosive Residues on Solid Surfaces”. J. Anal. At. Spectrom 2006; 21(1): 55–60.
171. Gottfried J.L., De Lucia F.C. Jr, Munson C.A., et al.“Strategies for Residue Explosives Detection Using Laser-Induced Breakdown Spectroscopy”. J. Anal. At. Spectrom 2008; 23(2): 205–216.
172. González R., Lucena P., Tobaria L.M., et al.“Standoff LIBS Detection of Explosive Residues Behind a Barrier”. J. Anal. At. Spectrom 2009; 24(8): 1123–1126.
173. Lucena P., Gaona I., Moros J., et al.“Location and Detection of Explosive-Contaminated Human Fingerprints on Distant Targets Using Standoff Laser-Induced Breakdown Spectroscopy”. Spectrochim. Acta, Part B 2013; 85: 71–77.
174. J. Moros, F.J. Fortes, J.M. Vadillo, et al. “LIBS Detection of Explosives in Traces”. In: S. Musazzi, U. Perini, editors. Laser Induced Breakdown Spectroscopy. Theory and Applications. Berlin; Heidelberg: Springer-Verlag, 2014. Chap. 13, Pp. 349–376.
175. Portnov A., Rosenwaks S., Bar I. “Emission Following Laser-Induced Breakdown Spectroscopy of Organic Compounds in Ambient Air”. Appl. Opt 2003; 42(15): 2835–2842.
176. Torrisi L., Lorussoc A., Nassisic V., et al.“Characterization of Laser Ablation of Polymethylmethacrylate at Different Laser Wavelengths”. Radiat. Eff. Defects Solids 2008; 163(3): 179–187.
177. Mullen C., Irwin A., Pond B.V., et al.“Detection of Explosives and Explosives-Related Compounds by Single Photon Laser Ionization Time-of-Flight Mass Spectrometry”. Anal. Chem 2006; 78(11): 3807–3814.
178. Moscicki T., Hoffman J., Szymanski Z. “The Effect of Laser Wavelength on Laser-Induced Carbon Plasma”. J. Appl. Phys 2013; 114(8): 083306.
179. Hoffman J., Chrzanowska J., Kucharski S., et al.“The Effect of Laser Wavelength on the Ablation Rate of Carbon”. Appl. Phys. A 2014; 117(1): 395–400.
180. Serrano J., Moros J., Laserna J.J. “Sensing Signatures Mediated by Chemical Structure of Molecular Solids in Laser-Induced Plasmas”. Anal. Chem 2015; 87(5): 2794–2801.
181. Wong D.M., Dagdigian P.J. “Comparison of Laser-Induced Breakdown Spectra of Organic Compounds with Irradiation at 1.5 and 1.064 μm”. Appl. Optics 2008; 47(31): G149–G157.
182. Kosmidis C., Ledingham K.W.D., Kilic H.S., et al.“On the Fragmentation of Nitrobenzene and Nitrotoluenes Induced by a Femtosecond Laser at 375 nm”. J. Phys. Chem. A 1997; 101(12): 2264–2270.
183. Tönnies K., Schmid R.P., Weickhardt C., et al.“Multiphoton Ionization of Nitrotoluenes by Means of Ultrashort Laser Pulses”. Int. J. Mass Spectrom 2001; 206(3): 245–250.
184. Weickhardt C., Tönnies K. “Short Pulse Laser Mass Spectrometry of Nitrotoluenes: Ionization and Fragmentation Behavior”. Rapid Commun. Mass Spectrom 2002; 16(5): 442–446.
185. Kurata-Nishimura M., Tokanai F., Matsuo Y., et al.“Simultaneous Atomization and Ionization of Large Organic Molecules Using Femtosecond Laser Ablation”. Appl. Surf. Sci 2002; 197–198: 715–719.
186. Hankin S.M., Tasker A.D., Robson L., et al.“Femtosecond Laser Time-of-Light Mass Spectrometry of Labile Molecular Analytes: Laser-Desorbed Nitro-Aromatic Molecules”. Rapid Commun. Mass Spectrom 2002; 16(2): 111–116.
187. Mullen C., Huestis D., Coggiola M., et al.“Laser Photoionization of Triacetone Triperoxide (TATP) by Femtosecond and Nanosecond Laser Pulses”. Int. J. Mass Spectrom 2006; 252(1): 69–72.
188. McEnnis C., Dikmelik Y., Spicer J.B. “Femtosecond Laser-Induced Fragmentation and Cluster Formation Studies of Solid Phase Trinitrotoluene Using Time-of-Flight Mass Spectrometry”. Appl. Surf. Sci 2007; 254(2): 557–562.
189. Mullen C., Coggiola M.J., Oser H. “Femtosecond Laser Photoionization Time-of-Flight Mass Spectrometry of Nitro-aromatic Explosives and Explosives Related Compounds”. J. Am. Soc. Mass Spectrom 2009; 20(3): 419–429.
190. De La Cruz J.M., Lozovoy V.V., Dantus M. “Isomeric Identification by Laser Control Mass Spectrometry”. J. Mass Spectrom 2007; 42(2): 178–186.
191. Sreedhar S., Rao E.N., Kumar G.M., et al.“Molecular Formation Dynamics of 5-nitro-2,4-dihydro-3H-1,2, 4-triazol-3-one,1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in Air, Nitrogen, and Argon Atmospheres Studied Using Femtosecond Laser Induced Breakdown Spectroscopy”. Spectrochim. Acta, Part B 2013; 87: 121–129.
192. Rao E.N., Sunku S., Rao S.V. “Femtosecond Laser-Induced Breakdown Spectroscopy Studies of Nitropyrazoles: The Effect of Varying Nitro Groups”. Appl. Spectrosc 2015; 69(11): 1342–1354.
193. Kalam S.A., Rao E.N., Hamad S., et al.“Femtosecond Laser Induced Breakdown Spectroscopy Based Standoff Detection of Explosives and Discrimination Using Principal Component Analysis”. Opt. Express 2018; 26(7): 8069–8083.
194. Dikmelik Y., McEnnis C., Spicer J.B. “Femtosecond and Nanosecond Laser-Induced Breakdown Spectroscopy of Trinitrotoluene”. Opt. Express 2008; 16(8): 5332–5337.
195. Al-Shboul K.F., Harilal S.S., Hassanein A. “Emission Features of Femtosecond Laser Ablated Carbon Plasma in Ambient Helium”. J. Appl. Phys 2013; 113(16): 163305.
196. Sunku S., Gundawar M.K., Myakalwar A.K., et al.“Femtosecond and Nanosecond Laser Induced Breakdown Spectroscopic Studies of NTO, HMX, and RDX”. Spectrochim. Acta, Part B 2013; 79-80: 31–38.
197. Rao E.N., Mathi P., Kalam S.A., et al.“Femtosecond and Nanosecond LIBS Studies of Nitroimidazoles: Correlation Between Molecular Structure and LIBS Data”. J. Anal. At. Spectrom 2016; 31(3): 737–750.
198. Panchenko A.N., Shulepov M.A., Tel’minov A.E., et al.“Pulsed IR Laser Ablation of Organic Polymers in Air: Shielding Effects and Plasma Pipe Formation”. J. Phys. D Appl. Phys 2011; 44(38): 385201.
199. Gaona I., Serrano J., Moros J., et al.“Range-Adaptive Standoff Recognition of Explosive Fingerprints on Solid Surfaces Using a Supervised Learning Method and Laser-Induced Breakdown Spectroscopy”. Anal. Chem 2014; 86(10): 5045–5052.
200. Babushok V.I., De Lucia F.C. Jr, Gottfried J.L., et al.“Double Pulse Laser Ablation and Plasma: Laser Induced Breakdown Spectroscopy Signal Enhancement”. Spectrochim. Acta, Part B 2006; 61(9): 999–1014.
201. Sánchez-Aké C., Bolaños M., Ramírez C.Z. “Emission Enhancement Using Two Orthogonal Targets in Double Pulse Laser-Induced Breakdown Spectroscopy”. Spectrochim. Acta B 2009; 64(9): 857–862.
202. Weidman M., Baudelet M., Palanco S., et al.“Nd:YAG-CO2 Double-Pulse Laser Induced Breakdown Spectroscopy of Organic Films”. Opt. Express 2010; 18(1): 259–266.
203. Brown S.R., Akpovo C.A., Martínez J., et al.“Plasma Dynamics in Double-Pulse LIBS on Dicarboxylic Acids Using Combined 532 nm Nd:YAG and Carbon Dioxide Laser Pulses”. Appl. Spectrosc 2014; 68(9): 1046–1059.
204. Lin C.H., Liang Z., Zhou J., et al.“Femtosecond and Nanosecond Dual-Laser Optical Emission Spectroscopy of Gas Mixtures”. Appl. Spectrosc 2014; 68(2): 222–225.
205. M. Wang, S. Wang, Z. Cao, et al. “Investigation of Double-Pulse Femtosecond Laser Induced Breakdown Spectroscopy of Polymethyl Methacrylate (PMMA)”. P. Soc. Photo-Opt. Ins. Laser-Based Micro- and Nanoprocessing IX. 2015. 95#351: 93511Q.
206. De Lucia F.C. Jr, Gottfried J.L., Munson C.A., et al.“Double Pulse Laser-Induced Breakdown Spectroscopy of Explosives: Initial Study towards Improved Discrimination”. Spectrochim. Acta, Part B 2007; 62(12): 1399–1404.
207. De Lucia F.C., Harmon R.S., McNesby K.L., et al.“Laser-Induced Breakdown Spectroscopy Analysis of Energetic Materials”. Appl. Optics 2003; 42(30): 6148–6152.
208. Gottfried J.L., De Lucia F.C. Jr, Munson C.A., et al.“Laser-Induced Breakdown Spectroscopy for Detection of Explosives Residues: A Review of Recent Advances, Challenges, and Future Prospects”. Anal. Bioanal. Chem 2009; 395(2): 283–300.
209. Abdelhamid M., Fortes F.J., Harith M.A., et al.“Analysis of Explosive Residues in Human Fingerprints Using Optical Catapulting–Laser-Induced Breakdown Spectroscopy”. J. Anal. At. Spectrom 2011; 26(7): 1445–1450.
210. Wang Q.Q., Liu K., Zhao H., et al.“Detection of Explosives with Laser-Induced Breakdown Spectroscopy”. Front. Phys 2012; 7(6): 701–707.
211. Fernández-Bravo A., Lucena P., Laserna J.J. “Selective Sampling and Laser-Induced Breakdown Spectroscopy Analysis of Organic Explosive Residues on Polymer Surfaces”. Appl. Spectrosc 2012; 66(10): 1197–1203.
212. Moros J., Lorenzo J.A., Lucena P., et al.“Simultaneous Raman Spectroscopy-Laser Induced Breakdown Spectroscopy for Instant Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform”. Anal. Chem 2010; 82(4): 1389–1400.
213. Moros J., Lorenzo J.A., Lucena P., et al.“Simultaneous Raman-LIBS for the Standoff Analysis of Explosive Materials”. Spectrosc. Europe 2010; 22(3): 18–22.
214. Moros J., Laserna J.J. “New Raman-Laser Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform”. Anal. Chem 2011; 83(16): 6275–6285.
215. Moros J., Lorenzo J.A., Laserna J.J. “Standoff Detection of Explosives: Critical Comparison for Ensuing Options on Raman Spectroscopy-LIBS Sensor Fusion”. Anal. Bioanal. Chem 2011; 400(10): 3353–3365.
216. Moros J., Laserna J.J. “Unveiling the Identity of Distant Targets Through Advanced Raman–Laser-Induced Breakdown Spectroscopy Data Fusion Strategies”. Talanta 2015; 134: 627–639.
217. De Lucia F.C. Jr, Gottfried J.L., Munson C.A., et al.“Multivariate Analysis of Standoff Laser-Induced Breakdown Spectroscopy Spectra for Classification of Explosive-Containing Residues”. Appl. Opt 2008; 47(31): G112–G121.
218. Moros J., Serrano J., Sánchez C., et al.“New Chemometrics in Laser-Induced Breakdown Spectroscopy for Recognizing Explosives Residues”. J. Anal. At. Spectrom 2012; 27(12): 2111–2122.
219. De Lucia F.C. Jr, Gottfried J.L. “Classification of Explosive Residues on Organic Substrates Using Laser Induced Breakdown Spectroscopy”. Appl. Optics 2012; 51(7): B83–B92.
220. Moros J., Serrano J., Gallego F.J., et al.“Recognition of Explosives Fingerprints on Objects for Courier Services Using Machine Learning Methods and Laser-Induced Breakdown Spectroscopy”. Talanta 2013; 110: 108–117.
221. Serrano J., Moros J., Sánchez C., et al.“Advanced Recognition of Explosives in Traces on Polymer Surfaces Using LIBS and Supervised Learning Classifiers”. Anal. Chim. Acta 2014; 806: 107–116.
222. Moros J., Laserna J.J. “Spectral Sieving-Based Strategy for Sensing Inorganic and Organic Traces on Solid Surfaces by Laser-Induced Breakdown Spectroscopy”. Anal. Methods 2015; 7(17): 7280–7289.
223. A.K. Myakalwar, N. Spegazzini, C. Zhang, et al. “Less Is More: Avoiding the LIBS Dimensionality Curse through Judicious Feature Selection for Explosive Detection”. Sci. Rep. 2015. 5: Article 13169.
224. Wang Q.Q., He L.A., Zhao Y., et al.“Study of Cluster Analysis Used in Explosives Classification with Laser-Induced Breakdown Spectroscopy”. Laser Phys 2016; 26(6): 065605-1–065605-8.
225. Shaik A.K., Epuru N.R., Syed H., et al.“Femtosecond Laser Induced Breakdown Spectroscopy Based Standoff Detection of Explosives and Discrimination Using Principal Component Analysis”. Opt. Express 2018; 26(7): 8069–8083.
226. Portnov A., Rosenwaks S., Bar I. “Identification of Organic Compounds in Ambient Air via Characteristic Emission Following Laser Ablation”. J. Lumin 2003; 102−103: 408–413.
227. Anzano J., Lasheras R.J., Bonilla B., et al.“Classification of Polymers by Determining of C1:C2:CN:H:N:O Ratios by Laser-Induced Plasma Spectroscopy (LIPS)”. Polym. Test 2008; 27(6): 705–710.
228. Grégoire S., Boudinet M., Pelascini F., et al.“Laser-Induced Breakdown Spectroscopy for Polymer Identification”. Anal. Bioanal. Chem 2011; 400(10): 3331–3340.
229. St-Onge L., Sing R., Bechard S., et al.“Carbon Emissions Following 1.064 µm Laser Ablation of Graphite and Organic Samples in Ambient Air”. Appl. Phys. A 1999; 69(1): S913–S916.
230. De Lucia F.C. Jr, Gottfried J.L. “Characterization of a Series of Nitrogen-Rich Molecules Using Laser Induced Breakdown Spectroscopy”. Propell. Explos. Pyrot 2010; 35(3): 268–277.
231. Rai S., Rai A.K. “Characterization of Organic Materials by LIBS for Exploration of Correlation between Molecular and Elemental LIBS Signals”. AIP Adv 2011; 1(4): 042103-1–042103-11.
232. Grégoire S., Motto-Ros V., Ma Q.L., et al.“Correlation between Native Bonds in a Polymeric Material and Molecular Emissions from the Laser-Induced Plasma Observed with Space and Time Resolved Imaging”. Spectrochim. Acta, Part B 2012; 74–75: 31–37.
233. Mousavi S.J., Farsani M.H., Darbani S.M.R., et al.“CN and C2 Vibrational Spectra Analysis in Molecular LIBS of Organic Materials”. Appl. Phys. B 2016; 122(5): Article 106.
234. Fernández-Bravo Á., Delgado T., Lucena P., et al.“Vibrational Emission Analysis of the CN Molecules in Laser-Induced Breakdown Spectroscopy of Organic Compounds”. Spectrochim. Acta, Part B 2013; 89: 77–83.
235. De Lucia F.C. Jr, Gottfried J.L. “Influence of Molecular Structure on the Laser-Induced Plasma Emission of the Explosive RDX and Organic Polymers”. J. Phys. Chem. A 2013; 117(39): 9555–9563.
236. Kalam S.A., Murthy N.L., Mathi P., et al.“Correlation of Molecular, Atomic Emissions with Detonation Parameters in Femtosecond and Nanosecond LIBS Plasma of High Energy Materials”. J. Anal. At. Spectrom 2017; 32(8): 1535–1546.
237. J.R. Scott, A.J. Effenberger Jr, J.J. Hatch. “Influence of Atmospheric Pressure and Composition on LIBS”. In: S. Musazzi, U. Perini, editors. Laser-Induced Breakdown Spectroscopy. Berlin; Heidelberg: Springer-Verlag, 2014. Chap. 4, Pp. 91–116.
238. Glumac N., Elliott G. “The Effect of Ambient Pressure on Laser-Induced Plasmas in Air”. Opt. Lasers Eng 2007; 45(1): 27–35.
239. Vors E., Gallou C., Salmon L. “Laser-Induced Breakdown Spectroscopy of Carbon in Helium and Nitrogen at High Pressure”. Spectrochim. Acta, Part B 2008; 63(10): 1198–1204.
240. Delgado T., Vadillo J.M., Laserna J.J. “Pressure Effects in Laser-Induced Plasmas of Trinitrotoluene and Pyrene by Laser-Induced Breakdown Spectroscopy (LIBS)”. Appl. Spectrosc 2014; 68(1): 33–38.
241. Harilal S.S., Bindhu C.V., Nampoori V.P.N., et al.“Influence of Ambient Gas on the Temperature and Density of Laser Produced Carbon Plasma”. Appl. Phys. Lett 1998; 72(2): 167–169.
242. Haider Z., Chaudhary K., Roslan S., et al.“Diagnostics of Laser Induced Graphite Plasma Under Various Pressures of Air, Helium, and Argon”. J. Teknol 2016; 78(3): 321–326.
243. Capitelli M., Casavola A., Colonna G., et al.“Laser-Induced Plasma Expansion: Theoretical and Experimental Aspects”. Spectrochim. Acta, Part B 2004; 59(3): 271–289.
244. Adamson M., Padmanabhan A., Godfrey G.J., et al.“Laser-Induced Breakdown Spectroscopy at a Water/Gas Interface: A Study of Bath Gas-Dependent Molecular Species”. Spectrochim. Acta, Part B 2007; 62(12): 1348–1360.
245. Delgado T., Alcántara J., Vadillo J.M., et al.“Condensed-Phase Laser Ionization Time-of-Flight Mass Spectrometry of Highly Energetic Nitroaromatic Compounds”. Rapid. Commun. Mass Sp 2013; 27(15): 1807–1813.
246. Delgado T., Vadillo J.M., Laserna J.J. “Acting Role of Background Gas in the Emission Response of Laser-Induced Plasmas of Energetic Nitro Compounds”. Appl. Spectrosc 2016; 70(8): 1364–1374.
247. Yousfi H., Abdelli-Messaci S., Ouamerali O., et al.“A Comparative Study of Carbon Plasma Emission in Methane and Argon Atmospheres”. Spectrochim. Acta, Part B 2018; 142: 97–107.
248. Colonna G., D’Angola A. Plasma Modeling: Methods and Applications, Bristol, UK: IOP Publishing Ltd, 2016.
249. Garrison B.J., Srinivasan R. “Laser Ablation of Organic Polymers: Microscopic Models for Photochemical and Thermal Processes”. J. Appl. Phys 1985; 57(8): 2909–2914.
250. Zhigilei L.V., Kodali P.B.S., Garrison B.J. “Molecular Dynamics Model for Laser Ablation and Desorption of Organic Solids”. J. Phys. Chem. B 1997; 101(11): 2028–2037.
251. Arnold N., Bityurin N., Bäuerle D. “Laser-Induced Thermal Degradation and Ablation of Polymers: Bulk Model”. Appl. Surf. Sci 1999; 138–139: 212–217.
252. Sadoqi M., Kumar S., Yamada Y. “Photochemical and Photothermal Model for Pulsed-Laser Ablation”. J. Thermophys. Heat Tr 2002; 16(2): 193–199.
253. Bityurin N., Luk’yanchuk B.S., Hong M.H., et al.“Models for Laser Ablation of Polymers”. Chem. Rev 2003; 103(2): 519–552.
254. Acquaviva S. “Simulation of Emission Molecular Spectra by a Semi-Automatic Programme Package: The Case of C2 and CN Diatomic Molecules Emitting During Laser Ablation of a Graphite Target in Nitrogen Environment”. Spectrochim. Acta, Part A 2004; 60(8–9): 2079–2086.
255. Babushok V.I., De Lucia F.C. Jr, Dagdigian P.J., et al.“Kinetic Modeling Study of the Laser-Induced Plasma Plume of Cyclotrimethylenetrinitramine (RDX)”. Spectrochim. Acta, Part B 2007; 62(12): 1321–1328.
256. Dagdigian P.J., Khachatrian A., Babushok V.I. “Kinetic Model of C/H/N/O Emissions in Laser-Induced Breakdown Spectroscopy of Organic Compounds”. Appl. Opt 2010; 49(13): C58–C66.
257. Ma Q., Dagdigian P.J. “Kinetic Model of Atomic and Molecular Emissions in Laser-Induced Breakdown Spectroscopy of Organic Compounds”. Anal. Bioanal. Chem 2011; 400(10): 3193–3205.
258. Shabanov S.V., Gornushkin I.B. “Modeling Chemical Reactions in Laser-Induced Plasmas”. Appl. Phys. A 2015; 121(3): 1087–1107.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: September 5, 2019
Issue published: September 2019

Keywords

  1. Laser-produced plasmas
  2. optical emission
  3. organic compounds
  4. spectroscopy
  5. radicals
  6. excitation variables
  7. formation routes
  8. plasma dynamics
  9. molecular structure
  10. surrounding atmosphere

Rights and permissions

© The Author(s) 2019.
Request permissions for this article.

Authors

Affiliations

Javier Moros
Universidad de Málaga, UMALASERLAB, Málaga, Spain
Javier Laserna
Universidad de Málaga, UMALASERLAB, Málaga, Spain

Notes

Javier Laserna, Universidad de Malaga, 4 Jimenez Fraud Street, Malaga 29071, Spain. Email: [email protected]

Metrics and citations

Metrics

Journals metrics

This article was published in Applied Spectroscopy.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 903

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 64 view articles Opens in new tab

Crossref: 51

  1. Identification of tumor tissue in thin pathological samples via femtos...
    Go to citation Crossref Google Scholar
  2. Ultrafast ultraviolet laser-induced voltage of air
    Go to citation Crossref Google Scholar
  3. Novel optical method based on nebulization assisted laser induced plas...
    Go to citation Crossref Google Scholar
  4. Multifaceted Laser Applications for Wood – A Review from Properties An...
    Go to citation Crossref Google Scholar
  5. Long-wave infrared laser-induced breakdown spectroscopy of complex gas...
    Go to citation Crossref Google Scholar
  6. Nuclear Applications of Laser‐Induced Brea...
    Go to citation Crossref Google Scholar
  7. Molecular Species Formation in Laser‐Produced ...
    Go to citation Crossref Google Scholar
  8. High-accuracy measurement of the heat of detonation with good robustne...
    Go to citation Crossref Google Scholar
  9. Diagnostics of laser-induced plasma on carbon-based polymer material u...
    Go to citation Crossref Google Scholar
  10. A comparative study on the characteristics of nanosecond laser ablatio...
    Go to citation Crossref Google Scholar
  11. Microstructural evolution of coal to char after pyrolysis using laser-...
    Go to citation Crossref Google Scholar
  12. Real-time detection of bone-invasive oral cancer with laser-induced br...
    Go to citation Crossref Google Scholar
  13. Laser-induced breakdown spectroscopy in cementitious materials: A chro...
    Go to citation Crossref Google Scholar
  14. Comparative Long-Wave Infrared Laser-Induced Breakdown Spectroscopy Em...
    Go to citation Crossref Google Scholar
  15. Optical Emission Characterization of a Single Emitter Electrospray Thr...
    Go to citation Crossref Google Scholar
  16. Influence of ambient pressure on spatial–temporal evolution of local t...
    Go to citation Crossref Google Scholar
  17. A novel strategy for preparing calibration standards for laser-induced...
    Go to citation Crossref Google Scholar
  18. Evaluation of electrolyte element composition in human tissue by laser...
    Go to citation Crossref Google Scholar
  19. Quantification of Ions and Organic Molecules, in Nanoliter Samples, in...
    Go to citation Crossref Google Scholar
  20. Influence of inter-pulse delay on CN molecular emission from femtoseco...
    Go to citation Crossref Google Scholar
  21. Vibrational Emission Study of the CN and C2 in Nylon and ZnO/Nylon Pol...
    Go to citation Crossref Google Scholar
  22. Effect of lens-to-sample distance on spatial uniformity and emission s...
    Go to citation Crossref Google Scholar
  23. The crucial role of molecular emissions on LIBS differentiation of org...
    Go to citation Crossref Google Scholar
  24. Investigation of the CN and C2 emission characteristics and microstruc...
    Go to citation Crossref Google Scholar
  25. Application of Molecular Emissions in Laser-Induced Breakdown Spectros...
    Go to citation Crossref Google Scholar
  26. Effect of laser polarization on molecular emission from femtosecond LI...
    Go to citation Crossref Google Scholar
  27. Advanced Polymer Characterization
    Go to citation Crossref Google Scholar
  28. Discrimination of olive oils based on the olive cultivar origin by mac...
    Go to citation Crossref Google Scholar
  29. Laser-induced breakdown spectroscopy coupled with machine learning as ...
    Go to citation Crossref Google Scholar
  30. Strategies for trace metal quantification in polymer samples with an u...
    Go to citation Crossref Google Scholar
  31. Role of laser fluence on ionic emission characteristics from steel pla...
    Go to citation Crossref Google Scholar
  32. Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applicatio...
    Go to citation Crossref Google Scholar
  33. Temporally and spatially resolved study of laser-induced plasma genera...
    Go to citation Crossref Google Scholar
  34. Laser-Induced Breakdown Spectroscopy for the Discrimination of Explosi...
    Go to citation Crossref Google Scholar
  35. Analysis of liquid petroleum using a laser-induced breakdown spectrosc...
    Go to citation Crossref Google Scholar
  36. Early- and late-time dynamics of laser-produced plasmas by combining e...
    Go to citation Crossref Google Scholar
  37. Investigation on the origin of molecular emissions in laser-induced br...
    Go to citation Crossref Google Scholar
  38. Laser-Induced Breakdown Spectroscopy analysis of polymers in three dif...
    Go to citation Crossref Google Scholar
  39. Influence of target temperature on AlO emission of femtosecond laser-i...
    Go to citation Crossref Google Scholar
  40. Atomic and Molecular Species Post-2 μs Dynamics in Laser-Induced Carbo...
    Go to citation Crossref Google ScholarPub Med
  41. The role of metastable atoms in atomic excitation process of magnesium...
    Go to citation Crossref Google Scholar
  42. Atomic spectrometry update: review of advances in the analysis of meta...
    Go to citation Crossref Google Scholar
  43. Review on recent advances in analytical applications of molecular emis...
    Go to citation Crossref Google Scholar
  44. Effects of post-laser irradiation on the optical and structure propert...
    Go to citation Crossref Google Scholar
  45. Direct Production of CH(A 2 Δ) Radical fro...
    Go to citation Crossref Google Scholar
  46. Detectability and discrimination of biomarker organic precursors in a ...
    Go to citation Crossref Google Scholar
  47. Considerations on formation mechanisms of emitting species of organic ...
    Go to citation Crossref Google Scholar
  48. Atomic spectrometry update: review of advances in atomic spectrometry ...
    Go to citation Crossref Google Scholar
  49. Chemical Classification of Explosives
    Go to citation Crossref Google Scholar
  50. A singularity free and derivative free approach for Abel integral equa...
    Go to citation Crossref Google Scholar
  51. Formation of CN Radical from Nitrogen and Carbon Condensation and from...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:

ASP members can access this journal content using society membership credentials.

ASP members can access this journal content using society membership credentials.


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub

Full Text

View Full Text