Researchers are becoming interested in combining meta-analytic techniques and structural equation modeling to test theoretical models from a pool of studies. Most existing procedures are based on the assumption that all correlation matrices are homogeneous. Few studies have addressed what the next step should be when studies being analyzed are heterogeneous and the search for moderator variables for homogeneous subgroup analysis fails. Cluster analysis is proposed and evaluated in this article as an exploratory tool to classify studies into relatively homogeneous groups. Simulation studies indicate that using Euclidean distance on raw correlation coefficients or U-transformed scores with the complete linkage or Ward’s minimum-variance methods will provide satisfactory results.

Aldenderfer, M. S. , & Blashfield, R. K. (1984). Cluster analysis. Beverly Hills, CA: Sage.
Google Scholar | Crossref
Bacon, D. R. (2001). An evaluation of cluster analytic approaches to initial model specification. Structural Equation Modeling, 8, 397-429.
Google Scholar | Crossref
Becker, B. J. (1992). Using results from replicated studies to estimate linear models. Journal of Educational Statistics, 17, 341-362.
Google Scholar | Crossref
Becker, B. J. (1995). Corrections to “Using results from replicated studies to estimate linear models.” Journal of Educational Statistics, 20, 100-102.
Google Scholar | SAGE Journals
Becker, B. J. (2000). Multivariate meta-analysis. In H. E. A. Tinsley & S. D. Brown (Eds.) Handbook of applied multivariate statistics and mathematical modeling (pp.499-525). San Diego, CA: Academic Press.
Google Scholar | Crossref
Becker, B. J. (2001). Examining theoretical models through research synthesis: The benefits of model-driven meta-analysis. Evaluation and the Health Professions, 24, 190-217.
Google Scholar | SAGE Journals
Becker, B. J. , & Schram, C. M. (1994). Examining explanatory models through research synthesis. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 357-381). New York: Russell Sage.
Google Scholar
Blashfield, R. K. , & Aldenderfer, M. S. (1989). The methods and problems of cluster analysis. In J. R. Nesselroade & R. B. Cattell (Eds.), Handbook of multivariate experimental psychology (pp. 447-473). New York: Plenum.
Google Scholar
Brown, S. P. , & Peterson, R. A. (1993). Antecedents and consequences of salesperson job satisfaction: meta-analysis and assessment of causal effects. Journal of Marketing Research, 30, 63-77.
Google Scholar | Crossref
Brown, S. P. , & Stayman, D. M. (1992). Antecedents and consequences of attitude toward the ad: A meta-analysis. Journal of Consumer Research, 19, 34-51.
Google Scholar | Crossref | ISI
Cheung, M. W. L. , & Chan, W. (2005). Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods, 10, 40-64.
Google Scholar | Crossref | Medline | ISI
Cheung, S. F. (2000). Examining solutions to two practical issues in meta-analysis: Dependent correlations and missing data in correlation matrices (Doctoral dissertation, Chinese University of Hong Kong, 2000). Dissertation Abstracts International, 61(8-B), 4469.
Google Scholar
Cohen, J. (1960). A coefficient of agreement for normal scales. Educational and Psychological Measurement, 20, 37-46.
Google Scholar | SAGE Journals | ISI
Colquitt, J. A. , LePine, J. A. , & Noe, R. A. (2000). Toward an integrative theory of training motivation: A meta-analytic path analysis of 20 years of research. Journal of Applied Psychology, 85, 678-707.
Google Scholar | Crossref | Medline | ISI
Cortina, J. M. (2003). Apples and oranges (and pears, oh my!): The search for moderators in meta-analysis. Organizational Research Methods, 6, 415-439.
Google Scholar | SAGE Journals | ISI
Digman, J. M. (1997). Higher-order factors of the Big Five. Journal of Personality and Social Psychology, 73, 1246-1256.
Google Scholar | Crossref | Medline | ISI
Dumenci, L. , & Windle, M. (2001). Cluster analysis as a method of recovering types of intraindividual growth trajectories: A Monte Carlo study. Multivariate Behavioral Research, 36, 501-522.
Google Scholar | Crossref | Medline
Engels, E. A. , Schmid, C. H. , Terrin, N. , Olkin, I. , & Lau, S. (2000). Heterogeneity and statistical significance in meta-analysis: An empirical study of 125 meta-analyses. Statistics in Medicine, 19, 1707-1728.
Google Scholar | Crossref | Medline
Everitt, B. S. , Landau, S. , & Leese, M. (2001). Cluster analysis (4th ed.). London: Oxford University Press.
Google Scholar
Field, A. P. (2001). Meta-analysis of correlation coefficients: A Monte Carlo comparison of fixed- and random-effects methods. Psychological Methods, 6, 161-180.
Google Scholar | Crossref | Medline | ISI
Glass, G. V (1976). Primary, secondary, and meta-analysis of research. Educational Researcher, 5, 3-8.
Google Scholar | SAGE Journals
Glasziou, P. P. , & Sanders, S. L. (2002). Investigating causes of heterogeneity in systematic reviews. Statistics in Medicine, 21, 1503-1511.
Google Scholar | Crossref | Medline
Gordon, A. D. (1998).Cluster validation. In C. Hayashi , N. Ohsumi , K. Yajima , Y. Tanaka , H.-H. Bock , & Y. Baba (Eds.), Data science: Classification and related methods (pp. 22-39). New York: Springer-Verlag.
Google Scholar | Crossref
Gordon, A. D. (1999). Classification (2nd ed.). London: Chapman & Hall.
Google Scholar
Hafdahl, A. R. (2002). Multivariate meta-analysis for exploratory factor analytic research (Doctoral dissertation, University of North Carolina at Chapel Hill, 2002). Dissertation Abstracts International, 62(8-B), 3843.
Google Scholar
Hedges, L. V. , & Olkin, I. (1983). Clustering estimates of effect magnitude from independent studies. Psychological Bulletin, 93(3), 563-573.
Google Scholar | Crossref
Hedges, L. V. , & Olkin, I. (1985). Statistical methods for meta-analysis. Orlando, FL: Academic Press.
Google Scholar
Hedges, L. V. , & Vevea, J. L. (1998). Fixed- and random-effects models in meta-analysis. Psychological Methods, 3, 486-504.
Google Scholar | Crossref | ISI
Hubert, L. , & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193-218.
Google Scholar | Crossref | ISI
Hunter, J. E. , & Schmidt, F. L. (1990). Methods of meta-analysis: Correcting error and bias in research findings. Newbury Park, CA: Sage.
Google Scholar
Jardine, N. , & Sibson, R. (1971). Mathematical taxonomy. New York: John Wiley.
Google Scholar
Kalaian, H. A. , & Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1, 227-235.
Google Scholar | Crossref | ISI
Lance, G. N. , & Williams, W. T. (1967). A general theory of classificatory sorting strategies. Computer Journal, 9, 373-380.
Google Scholar | Crossref
Lijmer, J. G. , Bossuyt, P. M. M. , & Heisterkamp, S. H. (2002). Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Statistics in Medicine, 21, 1525-1537.
Google Scholar | Crossref | Medline
Mardia, K. V. , Kent, J. T. , & Bibby, J. M. (1979). Multivariate analysis. London: Academic Press.
Google Scholar
Marín-Martínez, F. , & Sánchez-Meca, J. (1998). Testing for dichotomous moderators in meta-analysis. Journal of Experimental Education, 67, 69-81.
Google Scholar | Crossref
Miller, N. , & Pollock, V. E. (1994). Meta-analytic synthesis for theory development. In H. Cooper & L. V. Hedges (Eds.), The handbook of research synthesis (pp. 457-483). New York: Russell Sage.
Google Scholar
Milligan, G. W. , & Cooper, M. C. (1985). An examination of procedures for determining the number of cluster in a data set. Psychometrika, 50, 159-179.
Google Scholar | Crossref
Milligan, G. W. , & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research, 21, 41-58.
Google Scholar | Crossref | Medline
Milligan, G. W. , & Cooper, M. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11, 329-354.
Google Scholar | SAGE Journals | ISI
Milligan, G. W. , & Cooper, M. C. (1988). A study of standardization of variables in cluster analysis. Journal of Classification, 5, 181-204.
Google Scholar | Crossref | ISI
Milligan, G. W. , & Isaac, P. (1980). The validation of four ultrametric clustering algorithms. Pattern Recognition, 12, 41-50.
Google Scholar | Crossref | ISI
Muthén, B. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage.
Google Scholar | Crossref
Muthén, B. , Brown, C. H. , Masyn, K. , Jo, B. , Khoo, S. T. , Yang, C. C. , et al. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics, 3, 459-475.
Google Scholar | Crossref | Medline | ISI
National Research Council . (1992). Combining information: Statistical issues and opportunities for research. Washington, DC: National Academy Press.
Google Scholar
Overall, J. E. , & Magee, K. N. (1992). Replication as a rule for determining the number of clusters in hierarchical cluster analysis. Applied Psychological Measurement, 16, 119-128.
Google Scholar | SAGE Journals | ISI
Pigott, T. D. (2001). Missing predictors in models of effect size. Evaluation and the Health Professionals, 24, 277-307.
Google Scholar | SAGE Journals
Poon, W. Y. , Chan, W. , Lee, S. Y. , & Leung, K. (1993). Preliminary analysis of multiple group structural equation modeling via cluster analysis. In American Statistical Association (Ed.), Proceedings of the Social Statistics Section (pp. 368-373). Washington, DC: American Statistical Association.
Google Scholar
Raudenbush, S. W. , Becker, B. J. , & Kalaian, H. (1988). Modeling multivariate effect sizes. Psychological Bulletin, 103, 111-120.
Google Scholar | Crossref | ISI
Roussos, L. A. , Stout, W. F. , & Marden, J. I. (1998). Using new proximity measures with hierarchical cluster analysis to detect multidimensionality. Journal of Educational Measurement, 35, 1-30.
Google Scholar | Crossref | ISI
SAS Institute . (1995). SAS/IML software: Changes and enhancements, through Release 6.11. Cary, NC: Author.
Google Scholar
Shadish, W. R. (1996). Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychological Methods, 1, 47-65.
Google Scholar | Crossref | ISI
Sokal, R. R. , & Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409-1438.
Google Scholar
Sokal, R. R. , & Sneath, P. H. (1963). Principles of numerical taxonomy. London: Freeman.
Google Scholar
Song, F. , Sheldon, T. A. , Sutton, A. J. , & Jones, D. R. (2001). Methods for exploring heterogeneity in meta-analysis. Evaluation and the Health Professions, 24, 126-151.
Google Scholar | SAGE Journals | ISI
Verhaeghen, P. , & Salthouse, T. A. (1997). Meta-analyses of age-cognition relations in adulthood: Estimates of linear and nonlinear age effects and structural models. Psychological Bulletin, 122, 231-249.
Google Scholar | Crossref | Medline | ISI
Viswesvaran, C. , & Ones, D. S. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48, 865-885.
Google Scholar | Crossref | ISI
Viswesvaran, C. , & Sanchez, J. I. (1998). Moderator search in meta-analysis: A review and cautionary note on existing approaches. Educational and Psychological Measurement, 58, 77-87.
Google Scholar | SAGE Journals | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

EPM-article-ppv for $37.50
Single Issue 24 hour E-access for $323.77

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top