Some usability and interpretability issues for single-strategy cognitive assessment models are considered. These models posit a stochastic conjunctive relationship between a set of cognitive attributes to be assessed and performance on particular items/tasks in the assessment. The models considered make few assumptions about the relationship between latent attributes and task performance beyond a simple conjunctive structure. An example shows that these models can be sensitive to cognitive attributes, even in data designed to well fit the Rasch model. Several stochastic ordering and monotonicity properties are considered that enhance the interpretability of the models. Simple data summaries are identified that inform about the presence or absence of cognitive attributes when the full computational power needed to estimate the models is not available.

Adams, R. J. , Wilson, M. , & Wang, W.-C. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 123.
Google Scholar | SAGE Journals | ISI
Baxter, G. P. , & Glaser, R. (1998). Investigating the cognitive complexity of science assessments. Educational Measurement: Issues and Practice, 17, 3745.
Google Scholar | Crossref
Carpenter, P. A. , Just, M. A. , & Shell, P. (1990). What one intelligence test measures: A theoretical account of processing in the Raven’s Progressive Matrices Test. Psychological Review, 7, 404431.
Google Scholar | Crossref
Corbett, A. T. , Anderson, J. R. , & O’Brien, A. T. (1995). Student modeling in the ACT programming tutor. In P. D. Nichols , S. F. Chipman , & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 1941). Hillsdale NJ: Erlbaum.
Google Scholar
DiBello, L. V. , Stout, W. F. , & Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In P. D. Nichols , S. F. Chipman , & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 361389). Hillsdale NJ: Erlbaum.
Google Scholar
Doignon, J.-P. , & Falmagne, J.-C. (1999). Knowledge spaces. New York: Springer-Verlag.
Google Scholar | Crossref
Draney, K. L. , Pirolli, P. , & Wilson, M. (1995). A measurement model for a complex cognitive skill. In P. D. Nichols , S. F. Chipman , R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 103125). Hillsdale NJ: Erlbaum.
Google Scholar
Embretson, S. E. (1997). Multicomponent response models. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 305321). New York: Springer-Verlag.
Google Scholar | Crossref
Fischer, G. H. (1995). The linear logistic test model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 131155). New York: Springer-Verlag.
Google Scholar | Crossref
Glas, C. A. W. , & Ellis, J. (1994). RSP: Rasch scaling program. Groningen, The Netherlands: ProGAMMA.
Google Scholar
Glas, C. A. W. , & Verhelst, N. D. (1995). Testing the Rasch model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch models: Foundations, recent developments, and applications (pp. 6995). New York: Springer-Verlag.
Google Scholar | Crossref
Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26, 301321.
Google Scholar | Crossref | ISI
Hartz, S. , DiBello, L. V. , & Stout, W. F. (2000, July). Hierarchical Bayesian approach to cognitive assessment: Markov chain monte carlo application to the Unified Model. Paper presented at the Annual North American Meeting of the Psychometric Society, Vancouver, Canada.
Google Scholar
Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in graphical models (pp. 301354). Dordrecht, The Netherlands: Kluwer.
Google Scholar | Crossref
Hemker, B. T. , Sijtsma K. , Molenaar, I. W. , & Junker, B. W. (1997). Stochastic ordering using the latent trait and the sum score in polytomous IRT models. Psychometrika, 62, 331347.
Google Scholar | Crossref | ISI
Holland, P. W. , & Rosenbaum, P. R. (1986). Conditional association and unidimensionality in monotone latent trait models. Annals of Statistics, 14, 15231543.
Google Scholar | Crossref | ISI
Huguenard, B. R. , Lerch, F. J. , Junker, B. W. , Patz, R. J. , & Kass, R. E. (1997). Working memory failure in phone-based interaction. ACM Transactions on Computer-Human Interaction, 4, 67102.
Google Scholar | Crossref
Junker, B. W. (2001). On the interplay between nonparametric and parametric IRT, with some thoughts about the future. In A. Boomsma , M. A. J. Van Duijn , & T. A. B. Snijders (Eds.), Essays on item response theory (pp. 274276). New York: Springer-Verlag.
Google Scholar | Crossref
Junker, B. W. , & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24, 6581.
Google Scholar | SAGE Journals | ISI
Kyllonen, P. , & Christal, R. (1990). Reasoning ability is (little more than) working memory capacity? Intelligence, 14, 389394.
Google Scholar | Crossref | ISI
Macready, G. B. , & Dayton, C. M. (1977). The use of probabilistic models in the assessment of mastery. Journal of Educational Statistics, 2, 99120.
Google Scholar | Crossref
Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523547.
Google Scholar | Crossref | ISI
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187212.
Google Scholar | Crossref | ISI
Mislevy, R. J. (1996). Test theory reconceived. Journal of Educational Measurement, 33, 379416.
Google Scholar | Crossref | ISI
Molenaar, I. W. , & Sijtsma, K. (2000). MSP5 for Windows [Computer program]. Groningen, The Netherlands: ProGAMMA.
Google Scholar
Nichols, P. , & Sugrue, B. (1999). The lack of fidelity between cognitively complex constructs and conventional test development practice. Educational Measurement: Issues and Practice, 18, 1829.
Google Scholar | Crossref
Pellegrino, J. , Chudowsky, N. , & Glaser, R. (Eds.). (2001). Knowing what students know: The science and design of educational assessment [Final Report of the Committee on the Foundations of Assessment]. Washington DC: Center for Education, National Research Council.
Google Scholar
Reckase, M. D. (1997). A linear logistic multidimensional model for dichotomous item response data. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 271286). New York: Springer-Verlag.
Google Scholar | Crossref
Resnick, L. B. , & Resnick, D. P. (1992). Assessing the thinking curriculum: New tools for educational reform. In B. R. Gifford & M. C. O’Connor (Eds.), Changing assessments: Alternative views of aptitude, achievement, and instruction (pp. 3775). Norwell MA: Kluwer.
Google Scholar | Crossref
Rijkes, C. P. M. (1996). Testing hypotheses on cognitive processes using IRT models. Unpublished doctoral dissertation, University of Twente, The Netherlands.
Google Scholar
Sijtsma, K. (1998). Methodology review: Nonparametric IRT approaches to the analysis of dichotomous item scores. Applied Psychological Measurement, 22, 331.
Google Scholar | SAGE Journals | ISI
Sijtsma, K. , & Verweij, A. (1999). Knowledge of solution strategies and IRT modeling of items for transitive reasoning. Applied Psychological Measurement, 23, 5568.
Google Scholar | SAGE Journals | ISI
Spiegelhalter, D. J. , Thomas, A. , Best, N. G. , & Gilks, W. R. (1997). BUGS: Bayesian inference using Gibbs sampling, Version 0.6 [Computer program]. Cambridge, UK: MRC Biostatistics Unit.
Google Scholar
Tanner, M. A. (1996). Tools for statistical inference: Methods for the exploration of posterior distributions and likelihood functions (3rd ed.). New York: Springer-Verlag.
Google Scholar | Crossref
Tatsuoka, K. K. (1995). Architecture of knowledge structures and cognitive diagnosis: A statistical pattern recognition and classification approach. In P. D. Nichols , S. F. Chipman , & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 327359). Hillsdale NJ: Erlbaum.
Google Scholar
Van der Ark, L. A. (2001). An overview of relationships in polytomous item response theory and some applications. Applied Psychological Measurement, 25, 273282.
Google Scholar | SAGE Journals | ISI
Van Lehn, K. , & Niu, Z. (in press). Bayesian student modeling, user interfaces and feedback: A sensitivity analysis. International Journal of Artificial Intelligence in Education.
Google Scholar
Van Lehn, K. , Niu, Z. , Siler, S. , & Gertner, A. (1998). Student modeling from conventional test data: A Bayesian approach without priors. In B.P.Goettle , H. M. Halff , C. L. Redfield , & V. J. Shute (Eds.), Proceedings of the Intelligent Tutoring Systems Fourth International Conference, ITS 98 (pp. 434443). Berlin: Springer-Verlag.
Google Scholar
Verweij, A. , Sijtsma, K. , & Koops, W. (1999). An ordinal scale for transitive reasoning by means of a deductive strategy. International Journal of Behavioral Development, 23, 241264.
Google Scholar | SAGE Journals | ISI
Wilson, M. , & Sloane, K. (2000). From principles to practice: An embedded assessment system. Applied Measurement in Education, 13, 181208.
Google Scholar | Crossref | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

APM-article-ppv for $37.50
Single Issue 24 hour E-access for $225.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top