Abstract
The generalized graded unfolding model (GGUM) is developed. This model allows for either binary or graded responses and generalizes previous item response models for unfolding in two useful ways. First, it implements a discrimination parameter that varies across items, which allows items to discriminate among respondents in different ways. Second, the GGUM permits response category threshold parameters to vary across items. Amarginal maximum likelihood algorithm is implemented to estimate GGUM item parameters, whereas person parameters are derived from an expected a posteriori technique. The applicability of the GGUM to common attitude testing situations is illustrated with real data on student attitudes toward abortion.
|
Andrich, D. (1988). The application of an unfolding model of the PIRT type to the measurement of attitude. Applied Psychological Measurement, 12, 33–51. Google Scholar | SAGE Journals | ISI | |
|
Andrich, D. (1996). A general hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert methodologies. British Journal of Mathematical and Statistical Psychology, 49, 347–365. Google Scholar | Crossref | ISI | |
|
Andrich, D. , & Luo, G. (1993). A hyperbolic cosine latent trait model for unfolding dichotomous single-stimulus responses. Applied Psychological Measurement, 17, 253–276. Google Scholar | SAGE Journals | ISI | |
|
Bartholomew, D. J. (1988). The sensitivity of latent trait analysis to choice of prior distribution. British Journal of Mathematical and Statistical Psychology, 41, 101–107. Google Scholar | Crossref | ISI | |
|
Bock, R. D. (1972). Estimating item parameters and latent ability when responses are scored in two or more nominal categories. Psychometrika, 37, 29–51. Google Scholar | Crossref | ISI | |
|
Bock, R. D. , & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459. Google Scholar | Crossref | ISI | |
|
Bock, R. D. , & Lieberman, M. (1970). Fitting a response model for n dichotomously scored items. Psychometrika, 35, 179–197. Google Scholar | Crossref | ISI | |
|
Bock, R. D. , & Mislevy, R. J. (1982). Adaptive EAP Estimation of ability in a microcomputer environment. Applied Psychological Measurement, 6, 431–444. Google Scholar | SAGE Journals | ISI | |
|
Cliff, N. , Collins, L. M. , Zatkin, J. , Gallipeau, D. , & McCormick, D. J. (1988). An ordinal scaling method for questionnaire and other ordinal data. Applied Psychological Measurement, 12, 83–97. Google Scholar | SAGE Journals | ISI | |
|
Coombs, C. H. (1964). A theory of data. New York: Wiley. Google Scholar | |
|
Davison, M. L. (1977). On a metric, unidimensional unfolding model for attitudinal and developmental data. Psychometrika, 42, 523–548. Google Scholar | Crossref | ISI | |
|
Desarbo, W. S. ,& Hoffman, D. L. (1986). Simple and weighted unfolding threshold models for the spatial representation of binary choice data. Applied Psychological Measurement, 10, 247–264. Google Scholar | SAGE Journals | ISI | |
|
Dodd, B. G. , De Ayala, R. J. , & Koch, W. R. (1995). Computerized adaptive testing with polytomous items. Applied Psychological Measurement, 19, 5–22. Google Scholar | SAGE Journals | ISI | |
|
Donoghue, J. R. (1994). An examination of the IRT information of polytomously scored reading items under the generalized partial credit model. Journal of Educational Measurement, 41, 295–311. Google Scholar | Crossref | ISI | |
| Donoghue, J. R. (1999). Establishing two important properties of two IRT-based models for unfolding data. Manuscript submitted for publication. Google Scholar | |
|
Donoghue, J. R. , & Isham, S. P. (1998). A comparison of procedures to detect item parameter drift. Applied Psychological Measurement, 22, 33–51. Google Scholar | SAGE Journals | ISI | |
|
Edwards, A. L. , & Kenney, K. C. (1946). A comparison of the Thurstone and Likert techniques of attitude scale construction. Journal of Applied Psychology, 30, 72–83. Google Scholar | Crossref | Medline | ISI | |
|
Ferguson, L. W. (1941). A study of the Likert technique of attitude scale construction. Journal of Social Psychology, 13, 51–57. Google Scholar | Crossref | |
|
Green, B. F. (1954). Attitude measurement. In G. Lindzey (Ed.), Handbook of social psychology (1st ed., Vol. 1, pp. 335–369). Cambridge MA: Addison-Wesley. Google Scholar | |
|
Hambleton, R. K. , & Swaminathan, H. (1985). Item response theory: Principles and applications. Boston: Kluwer-Nijhoff. Google Scholar | Crossref | |
|
Hambleton, R. K. , Swaminathan, H. , & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park CA: Sage. Google Scholar | |
|
Hoijtink, H. (1990). A latent trait model for dichotomous choice data. Psychometrika, 55, 641–656. Google Scholar | Crossref | ISI | |
|
Hoijtink, H. (1991). The measurement of latent traits by proximity items. Applied Psychological Measurement, 15, 153–169. Google Scholar | SAGE Journals | ISI | |
|
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 5–53. Google Scholar | |
|
Linacre, J. M. ,& Wright, B. D. (1994). A user’s guide to BIGSTEPS (Version 2.4). Chicago: MESA Press. Google Scholar | |
|
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale NJ: Erlbaum. Google Scholar | |
|
Masters, G. N. , & Wright, B. D. (1997). The partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 101–121). New York: Springer. Google Scholar | Crossref | |
|
Mislevy, R. , & Bock, R. D. (1990). PC BILOG 3: Item analysis and test scoring with binary logistic models (2nd. ed.). Chicago: Scientific Software, Inc. Google Scholar | |
|
Muraki, E. (1992). Ageneralized partial credit model: Application of an EM algorithm. Applied Psychological Measurement, 16, 159–176. Google Scholar | SAGE Journals | ISI | |
|
Muraki, E. (1993). Information functions of the generalized partial credit model. Applied Psychological Measurement, 17, 351–363. Google Scholar | SAGE Journals | ISI | |
|
Muraki, E. (1997). Ageneralized partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 153–164). New York: Springer. Google Scholar | Crossref | |
|
Orlando, M. , & Thissen, D. (1997, June). New item fit indices for dichotomous item response theory models. Paper presented at the annual meeting of the Psychometric Society, Gatlinburg TN. Google Scholar | |
|
Potenza, M. T. , & Dorans, N. J. (1995). DIF assessment for polytomously scored items: A framework for classification and evaluation. Applied Psychological Measurement, 19, 23–37. Google Scholar | SAGE Journals | ISI | |
|
Rao, C. R. (1973). Statistical inference and its applications (2nd ed.). New York: Wiley. Google Scholar | Crossref | |
| Roberts, J. S. (1995). Item response theory approaches to attitude measurement. (Doctoral dissertation, University of South Carolina, Columbia, 1995). Dissertation Abstracts International, 56, 7089B. Google Scholar | |
|
Roberts, J. S. , Donoghue, J. R. , & Laughlin, J. E. (1998). The generalized graded unfolding model: A general parametric item response model for unfolding graded responses (Research Rep. RR-98-32). Princeton NJ: Educational Testing Service. Google Scholar | |
|
Roberts, J. S. , & Laughlin, J. E. (1996a). A unidimensional item response model for unfolding responses from a graded disagree-agree response scale. Applied Psychological Measurement, 20, 231–255. Google Scholar | SAGE Journals | ISI | |
|
Roberts, J. S. , & Laughlin, J. E. (1996b). The graded unfolding model: A unidimensional item response model for unfolding graded responses (Research Rep. RR-96-16). Princeton NJ: Educational Testing Service. Google Scholar | |
|
Roberts, J. S. , Laughlin, J. E. & Wedell, D. H. (1999). Validity issues in the Likert and Thurstone approaches to attitude measurement. Educational and Psychological Measurement, 59, 211–233. Google Scholar | SAGE Journals | ISI | |
|
Roberts, J. S. , Wedell, D. H. , & Laughlin, J. E. (1998, April). Heightened sensitivity of Likert attitude scales to restriction of sample range. Paper presented at the annual meeting of the American Educational Research Association, San Diego California. Google Scholar | |
|
Seong, T. (1990). Sensitivity of marginal maximum likelihood estimation of item and ability parameters to the characteristics of prior ability distributions. Applied Psychological Measurement, 14, 299–311. Google Scholar | SAGE Journals | ISI | |
|
Shapiro, S. S. , & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52, 591–611. Google Scholar | Crossref | ISI | |
|
Thissen, D. , & Steinberg, L. (1997). A response model for multiple-choice items. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 51–65). New York: Springer. Google Scholar | Crossref | |
|
Thissen, D. , Steinberg, L. , & Wainer, H. (1993). Detection of differential item functioning using the parameters of item response models. In P. W. Holland & H. Wainer (Eds .), Differential item functioning (pp. 67–113). Hillsdale NJ: Erlbaum. Google Scholar | |
|
Thurstone, L. L. (1928). Attitudes can be measured. The American Journal of Sociology, 26, 249–269. Google Scholar | |
|
van Schuur, W. H. (1984). Structure in political beliefs: A new model for stochastic unfolding with application to European party activists. Amsterdam: CT Press. Google Scholar | |
|
van Schuur, W. H. (1993). Nonparametric unidimensional unfolding for multicategory data. In J. R. Freeman (Ed.), Political analysis (Vol. 4, pp. 41–74). Ann Arbor MI: University of Michigan Press. Google Scholar | |
|
van Schuur, W. H. ,& Kiers, H. A. L. (1994). Whyfactor analysis is often the incorrect model for analyzing bipolar concepts, and what model can be used instead. Applied Psychological Measurement, 18, 97–110. Google Scholar | SAGE Journals | ISI | |
|
Verhelst, N. D. , & Verstralen, H. H. F. M. (1993). A stochastic unfolding model derived from the partial credit model. Kwantitative Methoden, 42, 73–92. Google Scholar | |
|
Wainer, H. , Dorans, N. J. , Flaugher, R. , Green, B. F. , Mislevy, R. J. , Steinberg, L. , & Thissen, D. (1990). Computerized adaptive testing: A primer. Hillsdale NJ: Erlbaum. Google Scholar | |
|
Wright, B. D. , & Masters, G. N. (1982). Rating scale analysis. Chicago: MESA Press. Google Scholar | |
|
Yen, W. M. (1981). Using simulation results to choose a latent trait model. Applied Psychological Measurement, 5, 245–262. Google Scholar | SAGE Journals | ISI | |
|
Zwinderman, A. H. , & van den Wollenberg, A. L. (1990). Robustness of marginal maximum likelihood estimation in the Rasch model. Applied Psychological Measurement, 14, 73–81. Google Scholar | SAGE Journals | ISI |
