A Bayesian formulation for a popular conjunctive cognitive diagnosis model, the reduced reparameterized unified model (rRUM), is developed. The new Bayesian formulation of the rRUM employs a latent response data augmentation strategy that yields tractable full conditional distributions. A Gibbs sampling algorithm is described to approximate the posterior distribution of the rRUM parameters. A Monte Carlo study supports accurate parameter recovery and provides evidence that the Gibbs sampler tended to converge in fewer iterations and had a larger effective sample size than a commonly employed Metropolis–Hastings algorithm. The developed method is disseminated for applied researchers as an R package titled “rRUM.”

Brooks, S. P., Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455.
Google Scholar | ISI
Chen, Y., Liu, J., Xu, G., Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866.
Google Scholar | Crossref | Medline | ISI
Chiu, C.-Y., Douglas, J. A., Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633-665.
Google Scholar | Crossref | ISI
Chiu, C.-Y., Köhn, H.-F. (2016). The reduced RUM as a logit model: Parameterization and constraints. Psychometrika, 81, 350-370.
Google Scholar | Crossref | Medline | ISI
Chiu, C.-Y., Köhn, H.-F., Wu, H.-M. (2016). Fitting the reduced RUM with Mplus: A tutorial. International Journal of Testing, 16, 331-351.
Google Scholar | Crossref | ISI
Chung, M. (2014). Estimating the Q-matrix for cognitive diagnosis models in a Bayesian framework (Unpublished doctoral dissertation). Columbia University, New York, NY.
Google Scholar
Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40, 454-476.
Google Scholar | SAGE Journals | ISI
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130.
Google Scholar | SAGE Journals | ISI
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199.
Google Scholar | Crossref | ISI
de la Torre, J., Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353.
Google Scholar | Crossref | ISI
DiBello, L. V., Stout, W. F., Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In Nichols, P. D., Chipman, S. F., Brennan, R. L. (Eds.), Cognitively diagnostic assessment (pp. 361-389). Routledge.
Google Scholar
Embretson, S. (1984). A general latent trait model for response processes. Psychometrika, 49, 175-186.
Google Scholar | Crossref | ISI
Feng, Y., Habing, B. T., Huebner, A. (2013). Parameter estimation of the reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137-150.
Google Scholar | SAGE Journals | ISI
Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at Urbana–Champaign, Champaign.
Google Scholar
Henson, R. A., Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29, 262-277.
Google Scholar | SAGE Journals | ISI
Henson, R. A., Roussos, L., Douglas, J., He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32, 275-288.
Google Scholar | SAGE Journals | ISI
Henson, R. A., Templin, J. L., Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191-210.
Google Scholar | Crossref | ISI
Hoff, P. D. (2015). Equivariant and scale-free Tucker decomposition models. Bayesian Analysis.
Google Scholar | ISI
Jiang, H. (1996). Applications of computational statistics in cognitive diagnosis and IRT modeling (Unpublished doctoral dissertation). University of Illinois at Urbana–Champaign, Champaign.
Google Scholar
Junker, B. W., Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272.
Google Scholar | SAGE Journals | ISI
Kass, R. E., Carlin, B. P., Gelman, A., Neal, R. M. (1998). Markov chain Monte Carlo in practice: A roundtable discussion. The American Statistician, 52, 93-100.
Google Scholar | ISI
Kim, Y.-H. (2011). Diagnosing EAP writing ability using the reduced reparameterized unified model. Language Testing, 28, 509-541.
Google Scholar | SAGE Journals | ISI
Li, F., Cohen, A., Bottge, B., Templin, J. L. (2016). A latent transition analysis model for assessing change in cognitive skills. Educational and Psychological Measurement, 76, 181-204.
Google Scholar | SAGE Journals | ISI
Liu, Y., Douglas, J. A., Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33, 579-598.
Google Scholar | SAGE Journals | ISI
Maris, E. (1992). Psychometric models for psychological processes and structures (Unpublished doctoral dissertation). University of Leuven, Belgium.
Google Scholar
Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523-547.
Google Scholar | Crossref | ISI
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187-212.
Google Scholar | Crossref | ISI
Maris, E., De Boeck, P., Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 7-29.
Google Scholar | Crossref | ISI
Plummer, M., Best, N., Cowles, K., Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC (R package Version 0.16-1) [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=coda
Google Scholar
Roussos, L. A., DiBello, L. V., Stout, W., Hartz, S. M., Henson, R. A., Templin, J. L. (2007). The fusion model skills diagnosis system. In Leighton, J. P., Gierl, M. J. (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 275-318). Cambridge University Press.
Google Scholar | Crossref
Rupp, A., Templin, J., Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY: Guilford Press.
Google Scholar
Tanner, M. A., Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82(398), 528-540.
Google Scholar | Crossref | ISI
Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C: Applied Statistics, 51, 337-350.
Google Scholar | Crossref | ISI
Tatsuoka, K. K. (1984). Analysis of errors in fraction addition and subtraction problems. Computer-Based Education Research Laboratory, University of Illinois at Urbana–Champaign, Champaign.
Google Scholar
Templin, J. L., Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287-305.
Google Scholar | Crossref | Medline | ISI
Templin, J. L., Henson, R. A., Templin, S. E., Roussos, L. (2008). Robustness of hierarchical modeling of skill association in cognitive diagnosis models. Applied Psychological Measurement, 32, 559-574.
Google Scholar | SAGE Journals | ISI
Templin, J. L., Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32(2), 37-50.
Google Scholar | Crossref | ISI
von Davier, M . (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49-71.
Google Scholar | Crossref | Medline | ISI
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45, 479-494.
Google Scholar | Crossref | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

APM-article-ppv for $37.50
Single Issue 24 hour E-access for $225.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top