Abstract
A Bayesian formulation for a popular conjunctive cognitive diagnosis model, the reduced reparameterized unified model (rRUM), is developed. The new Bayesian formulation of the rRUM employs a latent response data augmentation strategy that yields tractable full conditional distributions. A Gibbs sampling algorithm is described to approximate the posterior distribution of the rRUM parameters. A Monte Carlo study supports accurate parameter recovery and provides evidence that the Gibbs sampler tended to converge in fewer iterations and had a larger effective sample size than a commonly employed Metropolis–Hastings algorithm. The developed method is disseminated for applied researchers as an R package titled “rRUM.”
References
|
Brooks, S. P., Gelman, A. (1998). General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics, 7, 434-455. Google Scholar | ISI | |
|
Chen, Y., Liu, J., Xu, G., Ying, Z. (2015). Statistical analysis of Q-matrix based diagnostic classification models. Journal of the American Statistical Association, 110(510), 850-866. Google Scholar | Crossref | Medline | ISI | |
|
Chiu, C.-Y., Douglas, J. A., Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applications. Psychometrika, 74, 633-665. Google Scholar | Crossref | ISI | |
|
Chiu, C.-Y., Köhn, H.-F. (2016). The reduced RUM as a logit model: Parameterization and constraints. Psychometrika, 81, 350-370. Google Scholar | Crossref | Medline | ISI | |
|
Chiu, C.-Y., Köhn, H.-F., Wu, H.-M. (2016). Fitting the reduced RUM with Mplus: A tutorial. International Journal of Testing, 16, 331-351. Google Scholar | Crossref | ISI | |
|
Chung, M. (2014). Estimating the Q-matrix for cognitive diagnosis models in a Bayesian framework (Unpublished doctoral dissertation). Columbia University, New York, NY. Google Scholar | |
|
Culpepper, S. A. (2015). Bayesian estimation of the DINA model with Gibbs sampling. Journal of Educational and Behavioral Statistics, 40, 454-476. Google Scholar | SAGE Journals | ISI | |
|
de la Torre, J. (2009). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130. Google Scholar | SAGE Journals | ISI | |
|
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179-199. Google Scholar | Crossref | ISI | |
|
de la Torre, J., Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika, 69, 333-353. Google Scholar | Crossref | ISI | |
|
DiBello, L. V., Stout, W. F., Roussos, L. A. (1995). Unified cognitive/psychometric diagnostic assessment likelihood-based classification techniques. In Nichols, P. D., Chipman, S. F., Brennan, R. L. (Eds.), Cognitively diagnostic assessment (pp. 361-389). Routledge. Google Scholar | |
|
Embretson, S. (1984). A general latent trait model for response processes. Psychometrika, 49, 175-186. Google Scholar | Crossref | ISI | |
|
Feng, Y., Habing, B. T., Huebner, A. (2013). Parameter estimation of the reduced RUM using the EM algorithm. Applied Psychological Measurement, 38, 137-150. Google Scholar | SAGE Journals | ISI | |
|
Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at Urbana–Champaign, Champaign. Google Scholar | |
|
Henson, R. A., Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29, 262-277. Google Scholar | SAGE Journals | ISI | |
|
Henson, R. A., Roussos, L., Douglas, J., He, X. (2008). Cognitive diagnostic attribute-level discrimination indices. Applied Psychological Measurement, 32, 275-288. Google Scholar | SAGE Journals | ISI | |
|
Henson, R. A., Templin, J. L., Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191-210. Google Scholar | Crossref | ISI | |
|
Hoff, P. D. (2015). Equivariant and scale-free Tucker decomposition models. Bayesian Analysis. Google Scholar | ISI | |
|
Jiang, H. (1996). Applications of computational statistics in cognitive diagnosis and IRT modeling (Unpublished doctoral dissertation). University of Illinois at Urbana–Champaign, Champaign. Google Scholar | |
|
Junker, B. W., Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25, 258-272. Google Scholar | SAGE Journals | ISI | |
|
Kass, R. E., Carlin, B. P., Gelman, A., Neal, R. M. (1998). Markov chain Monte Carlo in practice: A roundtable discussion. The American Statistician, 52, 93-100. Google Scholar | ISI | |
|
Kim, Y.-H. (2011). Diagnosing EAP writing ability using the reduced reparameterized unified model. Language Testing, 28, 509-541. Google Scholar | SAGE Journals | ISI | |
|
Li, F., Cohen, A., Bottge, B., Templin, J. L. (2016). A latent transition analysis model for assessing change in cognitive skills. Educational and Psychological Measurement, 76, 181-204. Google Scholar | SAGE Journals | ISI | |
|
Liu, Y., Douglas, J. A., Henson, R. A. (2009). Testing person fit in cognitive diagnosis. Applied Psychological Measurement, 33, 579-598. Google Scholar | SAGE Journals | ISI | |
|
Maris, E. (1992). Psychometric models for psychological processes and structures (Unpublished doctoral dissertation). University of Leuven, Belgium. Google Scholar | |
|
Maris, E. (1995). Psychometric latent response models. Psychometrika, 60, 523-547. Google Scholar | Crossref | ISI | |
|
Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64, 187-212. Google Scholar | Crossref | ISI | |
|
Maris, E., De Boeck, P., Van Mechelen, I. (1996). Probability matrix decomposition models. Psychometrika, 61, 7-29. Google Scholar | Crossref | ISI | |
|
Plummer, M., Best, N., Cowles, K., Vines, K. (2006). Coda: Convergence diagnosis and output analysis for MCMC (R package Version 0.16-1) [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=coda Google Scholar | |
|
Roussos, L. A., DiBello, L. V., Stout, W., Hartz, S. M., Henson, R. A., Templin, J. L. (2007). The fusion model skills diagnosis system. In Leighton, J. P., Gierl, M. J. (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 275-318). Cambridge University Press. Google Scholar | Crossref | |
|
Rupp, A., Templin, J., Henson, R. A. (2010). Diagnostic measurement: Theory, methods, and applications. New York, NY: Guilford Press. Google Scholar | |
|
Tanner, M. A., Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American statistical Association, 82(398), 528-540. Google Scholar | Crossref | ISI | |
|
Tatsuoka, C. (2002). Data analytic methods for latent partially ordered classification models. Journal of the Royal Statistical Society, Series C: Applied Statistics, 51, 337-350. Google Scholar | Crossref | ISI | |
|
Tatsuoka, K. K. (1984). Analysis of errors in fraction addition and subtraction problems. Computer-Based Education Research Laboratory, University of Illinois at Urbana–Champaign, Champaign. Google Scholar | |
|
Templin, J. L., Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11, 287-305. Google Scholar | Crossref | Medline | ISI | |
|
Templin, J. L., Henson, R. A., Templin, S. E., Roussos, L. (2008). Robustness of hierarchical modeling of skill association in cognitive diagnosis models. Applied Psychological Measurement, 32, 559-574. Google Scholar | SAGE Journals | ISI | |
|
Templin, J. L., Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32(2), 37-50. Google Scholar | Crossref | ISI | |
|
von Davier, M . (2014). The DINA model as a constrained general diagnostic model: Two variants of a model equivalency. British Journal of Mathematical and Statistical Psychology, 67, 49-71. Google Scholar | Crossref | Medline | ISI | |
|
Whitely, S. E. (1980). Multicomponent latent trait models for ability tests. Psychometrika, 45, 479-494. Google Scholar | Crossref | ISI |
