Local independence is a central assumption of commonly used item response theory models. Violations of this assumption are usually tested using test statistics based on item pairs. This study presents two quasi-exact tests based on the Q3 statistic for testing the hypothesis of local independence in the Rasch model. The proposed tests do not require the estimation of item parameters and can also be applied to small data sets. The authors evaluate the tests with three simulation studies. Their results indicate that the quasi-exact tests hold their alpha level under the Rasch model and have higher power against different forms of local dependence than several alternative parametric and nonparametric model tests for local independence.

Andrich, D., Kreiner, S. (2010). Quantifying response dependence between two dichotomous items using the Rasch model. Applied Psychological Measurement, 34, 181-192. doi:10.1177/0146621609360202
Google Scholar | SAGE Journals | ISI
Bechger, T. M., Maris, G. (2015). A statistical test for differential item pair functioning. Psychometrika, 80, 317-340. doi:10.1007/s11336-014-9408-y
Google Scholar | Crossref | Medline
Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In Lord, F. M., Novick, M. R. (Eds.), Statistical theories of mental test scores (pp. 392-479). Reading, MA: Addison-Wesley.
Google Scholar
Chen, W.-H., Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265-289. doi:10.2307/1165285
Google Scholar | SAGE Journals | ISI
Christensen, K. B., Makransky, G., Horton, M. (2017). Critical values for Yen’s Q3: Identification of local dependence in the Rasch model using residual correlations. Applied Psychological Measurement, 41, 178-194. doi:10.1177/0146621616677520
Google Scholar | SAGE Journals | ISI
Cressie, N., Read, T. R. (1984). Multinomial goodness-of-fit tests. Journal of the Royal Statistical Society: Series B (Methodological), 46, 440-464.
Google Scholar | Crossref
De Ayala, R . (2009). The theory and practice of item response theory. New York, NY: Guilford Press.
Google Scholar
Edwards, M. C., Houts, C. R., Cai, L. (2018). A diagnostic procedure to detect departures from local independence in item response theory models. Psychological Methods, 23, 138-149. doi:10.1037/met0000121
Google Scholar | Crossref | Medline
Fox, J., Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks CA: SAGE. Retrieved from http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
Google Scholar
Glas, C. A. W. (1988). The derivation of some tests for the Rasch model from the multinomial distribution. Psychometrika, 53, 525-546.
Google Scholar | Crossref | ISI
Glas, C. A. W., Suárez-Falcón, J. C. (2003). A comparison of item-fit statistics for the three-parameter logistic model. Applied Psychological Measurement, 27, 87-106. doi:10.1177/0146621602250530
Google Scholar | SAGE Journals | ISI
Habing, B., Roussos, L. A. (2003). On the need for negative local item dependence. Psychometrika, 68, 435-451. doi:10.1007/BF02294736
Google Scholar | Crossref | ISI
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65-70.
Google Scholar | ISI
Ip, H.-S. (2001). Testing for local dependency in dichotomous and polytomous item response models. Psychometrika, 66, 109-132. doi:10.1007/BF02295736
Google Scholar | Crossref | ISI
Kelderman, H. (2007). Loglinear multivariate and mixture Rasch models. In von Davier, M., Carstensen, C. H. (Eds.), Multivariate and mixture distribution Rasch models (pp. 77-97). New York, NY: Springer.
Google Scholar | Crossref
Kim, D., De Ayala, R., Ferdous, A. A., Nering, M. L. (2011). The comparative performance of conditional independence indices. Applied Psychological Measurement, 35, 447-471. doi:10.1177/0146621611407909
Google Scholar | SAGE Journals | ISI
Koller, I., Alexandrowicz, R. W. (2010). Eine psychometrische Analyse der ZAREKI-R mittels Rasch-Modellen [A psychometric analysis of the ZAREKI-R by the means of Rasch models]. Diagnostica, 56, 57-67. doi:10.1026/0012-1924/a000003
Google Scholar | Crossref
Koller, I., Alexandrowicz, R. W., Hatzinger, R. (2012). Das Rasch Modell in der Praxis: Eine Einführung mit eRm [The Rasch model in practical applications: An introduction with eRm]. Vienna, Austria: facultas.wuv, UTB.
Google Scholar
Koller, I., Hatzinger, R. (2013). Nonparametric tests for the Rasch model: Explanation, development, and application of quasi-exact tests for small samples. InterStat. Retrieved from http://interstat.statjournals.net/YEAR/2013/abstracts/1311002.php
Google Scholar
Koller, I., Maier, M. J., Hatzinger, R. (2015). An empirical power analysis of quasi-exact tests for the Rasch model: Measurement invariance in small samples. Methodology, 11, 45-54. doi:10.1027/1614-2241/a000090
Google Scholar | Crossref
Koller, I., Wiedermann, W., Glück, J. (2015). Item response models for dependent data: Quasi-exact tests for the investigation of some preconditions for measuring change. In Stemmler, M., von Eye, A., Wiedermann, W. (Eds.), Dependent data in social sciences research (pp. 263-279). Cham, Switzerland: Springer.
Google Scholar | Crossref
Levy, R., Mislevy, R. J., Sinharay, S. (2009). Posterior predictive model checking for multidimensionality in item response theory. Applied Psychological Measurement, 33, 519-537. doi:10.1177/0146621608329504
Google Scholar | SAGE Journals | ISI
Liu, Y., Maydeu-Olivares, A. (2013). Local dependence diagnostics in irt modeling of binary data. Educational and Psychological Measurement, 73, 254-274. doi:10.1177/0013164412453841
Google Scholar | SAGE Journals | ISI
Mair, P., Hatzinger, R., Maier, M. J. (2018). eRm: Extended Rasch Modeling (0.16-1) [Computer software manual]. Available from https://cran.r-project.org/web/packages/eRm/index.html
Google Scholar
Marais, I., Andrich, D. (2008). Formalizing dimension and response violations of local independence in the unidimensional Rasch model. Journal of Applied Measurement, 9, 200-215.
Google Scholar | Medline
Maydeu-Olivares, A., Liu, Y. (2015). Item diagnostics in multivariate discrete data. Psychological Methods, 20, 276-292. doi:10.1037/a0039015
Google Scholar | Crossref | Medline | ISI
Maydeu-Olivares, A., Montaño, R. (2013). How should we assess the fit of Rasch-type models? Approximating the power of goodness-of-fit statistics in categorical data analysis. Psychometrika, 78, 116-133. doi:10.1007/s11336-012-9293-1
Google Scholar | Crossref | Medline
Ponocny, I. (2001). Nonparametric goodness-of-fit tests for the Rasch model. Psychometrika, 66, 437-459. doi:10.1007/BF02294444
Google Scholar | Crossref | ISI
Rasch, G. (1960). Probabilistic models for some intelligence and achievement tests. Copenhagen, Denmark: Danish Institute for Educational Research.
Google Scholar
R Core Team . (2017). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria. Available from https://www.R-project.org/
Google Scholar
Robitzsch, A., Kiefer, T., Wu, M. (2018). TAM: Test analysis modules (R package version 2.12-18) [Computer software manual]. Available from https://CRAN.R-project.org/package=TAM
Google Scholar
Sinharay, S. (2005). Assessing fit of unidimensional item response theory models using a Bayesian approach. Journal of Educational Measurement, 42, 375-394. doi:10.1111/j.1745-3984.2005.00021.x
Google Scholar | Crossref | ISI
Suárez-Falcón, J. C., Glas, C. A. (2003). Evaluation of global testing procedures for item fit to the Rasch model. British Journal of Mathematical and Statistical Psychology, 56, 127-143. doi:10.1348/000711003321645395
Google Scholar | Crossref | Medline | ISI
van den Wollenberg, A. L . (1982). Two new test statistics for the Rasch model. Psychometrika, 47, 123-140. doi:10.1007/BF02296270
Google Scholar | Crossref | ISI
Verhelst, N. D. (2008). An efficient MCMC algorithm to sample binary matrices with fixed marginals. Psychometrika, 73, 705-728. doi:10.1007/s11336-008-9062-3
Google Scholar | Crossref
von Aster, M., Zulauf, M. W., Horn, R. (2006). Neuropsychologische Testbatterie für Zahlenverarbeitung und Rechnen bei Kindern (ZAREKI-R) [Neuropsychological Test Battery for Number Processing and Calculation in Children]. Frankfurt, Germany: Harcourt Test Services.
Google Scholar
Wainer, H., Bradlow, E. T., Wang, X. (2007). Testlet response theory and its applications. Cambridge, UK: Cambridge University Press.
Google Scholar | Crossref
Wang, W.-C., Wilson, M. (2005). The Rasch testlet model. Applied Psychological Measurement, 29, 126-149. doi:10.1177/0146621604271053
Google Scholar | SAGE Journals | ISI
Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427-450. doi:10.1007/BF02294627
Google Scholar | Crossref | ISI
Wei, T., Simko, V. (2017). R package “corrplot”: Visualization of a correlation matrix (Version 0.84) [Computer software manual]. Retrieved from https://github.com/taiyun/corrplot
Google Scholar
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three-parameter logistic model. Applied Psychological Measurement, 8, 125-145. doi:10.1177/014662168400800201
Google Scholar | SAGE Journals | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

APM-article-ppv for $37.50
Single Issue 24 hour E-access for $225.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top