Skip to main content
Intended for healthcare professionals
Restricted access
Review article
First published online October 22, 2010

Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance

Abstract

Among biomaterials used as implants in human body, sutures constitute the largest groups of materials having a huge market exceeding $1.3 billion annually. Sutures are the most widely used materials in wound closure and have been in use for many centuries. With the development of the synthetic absorbable polymer, poly(glycolic acid) (PGA) in the early 1970s, a new chapter has opened on absorbable polymeric sutures that got unprecedented commercial successes. Although several comparative evaluations of suture materials have been published, there were no serious attempts of late on a comprehensive review of production, properties, biodegradability, and performance of suture materials. This review proposes to bring to focus scattered data on chemistry, properties, biodegradability, and performance of absorbable polymeric sutures.

Get full access to this article

View all access and purchase options for this article.

References

Chu, C.-C., von Fraunhofer, J.A. and Greisler, H.P. (eds) (1996). Wound Closure Biomaterials and Devices, Boca Raton, Florida, CRC Press, Inc.
Wikipedia, the free encyclopedia. Available at: http://library.sccsc.edu/surgtech/sutures1.htm (accessed December 23, 2009).
Barber, F.A., Boothby, M.H. and Richards, D.P. New Sutures and Suture Anchors in Sports Medicine, Sports Med. Arthrosc., 2006: 14: 177-184.
Singhal, J.P., Singh, H. and Ray, A.R. Absorbable Suture Materials: Preparation and Properties, Polym. Rev., 1988: 28: 475-502.
Moy, R.L., Waldman, B. and Hein, D.W. A Review of Sutures and Suturing Techniques, J. Dermatol. Surg. Oncol., 1992: 18: 785-795.
Bloom, B.S. and Goldberg, D.J. Suture Material in Cosmetic Cutaneous Surgery, J. Cosmet. Laser Ther., 2007: 9: 41-45.
Ajmeri, J.R. and Ajemri, C.J. ( 2006). Surgical Sutures: The Largest Textile Implant Material, In: Anand, S.C., Kennedy, J.F. and Rajendran, S. (eds), Medical Textiles and Biomaterials for Health Care, Boca Raton, Boston, New York, Woodhead Publishing Ltd.; Cambridge, England, CRC Press, pp. 432-440.
Li, J. and Yuan, X.-Y. Research Progresses on Synthetic Absorbable Sutures, J. Tianjin Polytechnic University, 2006: 25: 18-21.
Horacek, I. Survey of the Present Knowledge on Biodegradable Polymers for Resorbable Sutures, Chemicke Vlakna, 1989: 39: 214-222.
Hon, L.-Q., Ganeshan, A., Thomas, S.M., Warakaulle, D., Jagdish, J. and Uberoi, R. Vascular Closure Devices: A Comparative Overview, Curr. Probl. Diagn. Radiol., 2009: 389: 33-43.
Yu G.V. and Cavaliere R. Suture Materials. Properties and Uses, J. Am. Podiatry. Assoc., 1983: 73: 57-64.
Gassner, R. Wound Closure Materials, Oral Maxillofac. Surg. Clin. North Am., 2004: 14: 95-104.
Edlich, R.F., Drake, D.B., Rodeheaver, G.T. et al. SynetureTM Stainless STEEL Suture. A Collective Review of its Performance in Surgical Wound Closure. J. Long Term Eff. Med. Implants, 2006: 16: 101-110.
Guttman, B. and Guttmann, H. ( 1994). Properties, Uses and Clinical Investigation, In: Dumitriu, S. (ed.), Polymeric Biomaterials, New York, NY, Marcel Dekker, Ch. 10, pp. 321-356.
Benicewicz, B.C. and Hopper, P. Polymers for Absorbable Surgical Sutures, Part I, Bioact. Compat. Polym. 1990 : 5: 543.
Jodar, M.R., Bel, P.E. and Sune, A.J.M. Synthetic Absorbable Suture Materials I Properties and Thread Length, Ciencia Pharm., 1992: 2: 47.
Jodar, M.R., Bel, P.E. and Sune, A.J.M. Synthetic Absorbable Suture Materials II Test of the Diameter and Caliber, Ciencia Pharm., 1992: 2: 292.
Jodar, M.R., Bel, P.E. and Sune, A.J.M. Synthetic Absorbable Suture Materials III. Tension Strength, Ciencia Pharm., 1992 : 2: 88.
Swanson, N.A. and Tromovitch, T.A. Suture Materials, 1980s: Properties, Uses, and Abuses. Int. J. Dermatol., 1982: 21: 373-378.
Vogt, P.M., Altintas, M.A., Radtke, C. and Meyer-Marcotty, M. Bases and Methods of Suturing [Grundlagen und Techniken der chirurgischen Naht], Chirurg, 2009: 80: 437-447.
Bennett, R.G. Selection of Wound Closure Materials, J. Am. Acad. Dermmatol., 1988: 18: 619.
Ayurveda For You. Available at: http://ayurveda-foryou.com/archive/surgery1. html (accessed December 28, 2009).
Mukherjee, D.P. Sutures. In: Kroschwitz, J.I. (eds) (1989). Polymers: Biomaterials and Medical Applications, New York, NY, John Wiley & Sons, pp. 535-545.
Planck, H., Dauner, M. and Renardy, M. (eds) (1990). Medical Textiles for Implantation, Berlin, Springer-Verlag.
Tewari, M. and Shukla, H.S. Sushruta: The Father of Indian Surgery, Indian J. Surg., 2005: 67: 229-230.
Kansupada, K.B. and Sassani, J.W. Sushruta: The Father of Indian surgery and Ophthalmology, Doc. Ophthalmol., 1997: 93: 159-167.
Raju, V.K. Sushruta of Ancient India, Indian J. Ophthalmol., 2003: 51: 119-122.
Chari, P.S. Sushruta and our Heritage, Indian J. Plastic Surg., 2003: 36: 4-13.
Bhishagratna, K.L. (1907). Sushruta Samhita, An English Translation of the Sushruta Samhita. Based on Original Sanskrit Text in three volumes. Calcutta, No. 10, Kasi Ghose’s Lane.
Animal Gut String. Available at: http://www.sutures-bbraun.com/index.cfm?B99330432A5AE626642C24642369CCA0 (accessed December 5, 2009).
Jaggi, O.P. (1973). History of Science and Technology in India, Vol.-IV: Indian System of Medicine, Delhi, Atma Ram & Sons.
Sharma, P.V. ( 1972). History of Medicine in India, New Delhi, Indian National Science Academy.
Sharma, P.V. ( 1972). Indian Medicine in the Classical Age, Varanasi, Chaukhamba Amarabharati Prakashan.
Ambekar, A.P. A Review on Spider Silk: New Biomaterial, Colourage, 2008: 55: 66-72.
Answersingenesis.org. Available at: http://www.answersingenesis.org/creation/v14/i2/scientists.asp (accessed December 12, 2009).
Lamont, A. Joseph Lister: Father of Modern Surgery, Creation, 1992: 14: 48-51.
Pubmedcentral. Available at: http://www.pubmedcentral.nih.gov/picrender.fcgi?artid=1081445&blobtype=pdf (accessed December 5, 2009 ).
Patel, KA and Thomas, W.E.G. Sutures, Ligatures and Staples, Surgery, 2008 : 26: 48-53.
Taylor, B. and Bayat, A. Basic Plastic Surgery Techniques and Principles: Choosing the Right Suture Material, Stud. BMJ, 2003: 11: 140-141.
Brissot, H. Current Suture Materials in Surgery [Les sutures chirurgicales, aujourd’hui], Prat Med Chir de l’Ani Cie, 2002; 37: 469-474.
Dunn, D.L. ( 1994). Wound Closure Manual, Ethicon Inc, Somerville, New Jersey, Johnson & Johnson Co.
Hochberg, J., Meyer, K.M. and Marion, M.D. Suture Choice and Other Methods of Skin Closure, Surg. Clin. North. Am., 2009: 899: 627-641.
DemeTECH. Available at: http://www.demetech.us/suture-specs.php (accessed December 28, 2009).
Chu, C.C. Mechanical Properties of Suture Materials: An Important Characterisation, Ann. Surg., 1981 : 193: 365.
Heyl, V. Plastic and Reconstructive Surgery: Suture Technique and Scar Issues [Nahttechnik und Narbenprobleme bei plastischen und rekonstruktiven Operationen], Gynakol . Prax., 2007: 31: 701-706.
Grisham, J.E. and Zukin, D.D. Suture Selection for the Pediatrician, Pediatr. Emerg. Care, 1990: 6: 301-314.
O’Neal, R.B. and Alleyn, C.D. Suture Materials and Techniques, Curr. Opin. Periodontol., 1997: 4: 89-95.
Awadein, A., Sharma, M., Bazemore, M.G., Saeed, H.A. and Guyton, D.L. Adjustable Suture Strabismus Surgery in Infants and Children, J AAPOS, 2008: 12: 585-590.
Szarmach, R.R., Livingston, R.N.J., Rodeheaver, G.T., Thacker, G.J. and Edlich, R.F. An Innovative Surgical Suture and Needle Evaluation and Selection Program, J. Long Term Eff. Med. Implants, 2002: 12: 211-229.
Williams, R.L. and Armstrong, D.G. Wound Healing: New Modalities for a New Millennium, Clin. Podiatr. Med. Surg., 1998 : 15: 117-128.
Adams, B., Levy, R., Rademaker, A.E., Goldberg, L.H. and Alam, M. Frequency of Use of Suturing and Repair Techniques Preferred by Dermatologic Surgeons, Dermatol. Surg., 2006: 32: 682-689.
Rodeheaver, G.T., Shimer, A.L., Boyd, L.M., Drake, D.B. and Edlich, R. An Innovative Absorbable Coating for the Polybutester Suture, J. Long Term Eff. Med. Implants, 2001 : 11: 41-54.
Cotton, R.S., Kumar, V. and Robin, S.L. ( 1989). Inflammation and Repair, In: Robin’s Pathologic Basis of Diseases, Philadelphia, WB Saunders, p. 39.
Callin, J.I., Goldstein, I.M. and Sydrmman, R. ( 1992). Inflammation: Basic Principles and Clinical Correlations, 2nd edn, New York, Raven Press.
Cohen, I.K., Diegelmmann, R.F. and Lindblad, W.J. (eds) (1992). Wound Healing: Biochemical and Clinical Aspects, Philadelphia, WB Saunders.
Lin, P.H., Hirko, M.K., von Fraunhofer, J.A. and Greisler, H.P. ( 1996). Wound Healing and Inflammatory Response to Biomaterials, Ch 2, In: Chu, C.C., von Fraunhofer, J.A. and Greisler, H.P. (eds), Wound Closure Biomaterials and Devices, Boca Raton, Florida, USA, CRC Press, Inc, pp. 7-24.
Catgut. Available at: http://en.wikipedia.org/wiki/Catgut (accessed December 12, 2009 ).
Francoeur, J.R. Joseph Lister: Surgeon Scientist (1827-1912), J. Invest. Surg., 2000: 13: 129-132.
Stone, I.K., von Fraunhofer, A.J. and Masterson, B.A. A Comparative Study of Suture Materials: CG and CG Treated with Glycerine, Am. J. Obstet. Gynecol., 1985: 151: 1087.
Grant, A. Dyspareunia Associated with the Use of Glycerol-Impregnated Catgut to Repair Perennial Trauma-Report of a Three Year Follow up Study, Br. J. Obstet. Gynecol., 1989: 96: 741.
Salthouse, T.N., Williams, J.A. and Williams, D.A. Relationship of Cellular Enzyme Activity to Catgut and Collagen Suture Activity, Surg. Gynecol. Obstet., 1969: 129: 691-696.
Jenkins, H.P., Hrdina, L.S., Owens, F.M. and Swisher, F.M. Absorption of Surgical Gut (catgut): Duration in Tissues after Loss of Tensile Strength, Arch. Surg., 1942: 45: 74.
Okada, T., Hayashi, T. and Ikada, Y. Degradation of Collagen Suture In Vitro and In Vivo, Biomaterials 1992: 13: 448.
Walton, M. Strength Retention of CG and Monofilament Absorbable Suture Materials in Joint Tissues, Clin. Orthop. Relat. Res., 1989: 242: 303-310.
Rhoads, J.E., Tabata, Y. and Nakajima A. The Decline in Strength of Catgut after Exposure to Living Tissues, Arch. Surg., 1937: 34: 377-397.
Aslan, M., Büyükkurt, M.C. and Yildirim U. Comparison of Different Absorbable Suture Materials in Skin Closure: An Experimental Study in Rats, Pain Clin., 2005: 17: 81-88.
Katz, A.R. and Turner, R.J. Evaluation of Tensile and Absorption Properties of PGA Sutures, Surg. Gynecol. Obstet., 1970: 131: 701.
Lawrie, P., Angus, G. and Reese, A.J.M. The Absorption of Surgical Catgut, Br. J. Surg., 1959: 46: 638.
Lawrie, P., Angus, G. and Reese, A.J.M. The Absorption of Surgical Catgut. II. The Influence of Size, Br. J. Surg., 1960: 47: 551-555.
Postlethwait, R.W. and Smith, B.M. A New Synthetic Absorbable Suture, Surg. Gynecol Obstet., 1975: 140: 377-380.
Reul Jr, GJ Use of Vicryl® (Polyglactin 910) Sutures in General Surgical and Cardiothoracic Procedures, Am. J. Surg., 1977: 134: 297-299.
Sanz, L.E., Patterson, J.A., Kamath, R., Willett, G., Ahmed, S.W. and Butterfield, A.B. Comparison of Maxon suture with Vicryl, Chromic Catgut, and PDS Sutures in Fascial Closure in Rats, Obstet. Gynecol., 1988: 71: 418-422.
Edlich, R.F., Panek, P.H. and Rodeheaver, G.T. Physical and Chemical Configuration of Sutures in the Development of Surgical Infection, Ann. Surg., 1973: 77: 679-688.
Tachibana, M., Yaita, A., Taniura, H., Fukasawa, K., Nagasue, N. and Nakamura. The Use of Chitin as a New Absorbable Suture Material: An Experimental Study, N. Surg. Today, 1988 : 18: 533-539.
Nakajima, M., Atsumi, K. and Kifune, K. Chitin is an Effective Material for Sutures, Jpn. J. Surg., 1986: 16: 418-424.
Shishatskaya, E.I., Volova, T.G., Puzyr, A.P., Mogilnaya, O.A. and Efremov, S.N. Tissue Response to the Implantation of Biodegradable Polyhydroxyalkanoate Sutures, J. Mater. Sci. Mater. Med., 2004 : 15: 719-728.
Sharp, K.W., Ross, C.B., Tillman, V.N. and Dunn, J.F. Common Bile Duct Healing. Do Different Absorbable Sutures Affect Stricture Formation and Tensile Strength?, Arch. Surg., 1989: 124: 408-414.
Wainstein, M., Anderson, J. and Elder, J.S. Comparison of Effects of Suture Materials on Wound Healing in a Rabbit Pyeloplasty Model, Urology, 1997: 49: 261-264.
Tian, F., Appert, H.E. and Howard, J.M. The Disintegration of Absorbable Suture Materials on Exposure to Human Digestive Juices: An Update, Am. Surg., 1994 : 60: 287-291.
Dunlap, W.A., Purnell, W.D. and McPherson Jr, S.D. Laboratory and Clinical Evaluation of a New Synthetic Absorbable Suture for Ophthalmic Surgery, Adv. Ophthalmol., 1976 : 33: 49-61.
Vasanthan, A., Satheesh, K., Hoopes, W., Lucaci, P., Williams, K. and Rapley, J. Comparing Suture Strengths for Clinical Applications: A Novel In Vitro Study, J. Periodontol., 2009: 80: 618-624.
Perrin, D.E. and English, J.P. ( 1997). PGA and Polylactide, In: Domb, A.J., Kost, J. and Wiseman D.M. (eds), Handbook of Biodegradable Polymers, The Netherlands, Harwood Academic Publishers, pp. 3-27.
Lowe, C.E. Preparation of High Molecular Weight Polyhydroxyacetic Ester, US Patent 2,668,162, 1954.
Al-Abdullah, T., Plint, A.C. and Fergusson, D. Absorbable Versus Non-absorbable Sutures in the Management of Traumatic Lacerations and Surgical Wounds: A Meta-Analysis, Pediatr. Emerg. Care, 2007: 23: 339-344.
Danielsen, C.C. Reconstituted Collagen Fibrils, Fibrillar and Molecular Stability of the Collagen upon Maturation In Vitro, Biochem. J., 1984: 222: 663-668.
Danielsen, C.C. Mechanical Properties of Reconstituted Collagen Fibrils. A Study on Reconstitution Methodology and Influence of In Vitro Maturation, Connect. Tissue Res., 1981: 9: 51-57.
Klopper, P.J. Collagen in Surgical Research, Eur. Surg. Res., 1986: 18: 218-223.
Alder, R.H., Montes, M., Dayer, R. and Harrod, D.A. Comparison of Reconstituted Collagen Suture for Colon Anstmoses, Surg. Gynecol Obstet., 1967: 124: 1245-1252.
Brumback, G.F. and McPherson Jr, S.D. Reconstituted Collagen Sutures in Corneal Surgery: An Experimental and Clinical Evaluation, Am. J. Opthalmol., 1967: 64: 222-227.
Regan, E.P. and Dunnington, J.H. Collagen Sutures in Cataract Surgery: Clinical and Experimental Observations, Trans. Am. Ophthalmol. Soc., 1966: 64: 39-49.
Benicewicz, B.C. and Hopper, P.K. Polymers for Absorbable Surgical Sutures - Part II, J. Bioact. Compat. Polym., 1991 : 6: 64-94.
Caulfield, R.H., Maleki-Tabrizi, A., Patel, H., Coldham, F., Mee, S. and Nanchahal, J. Comparison of Zones 1 to 4 Flexor Tendon Repairs Using Absorbable and Unabsorbable Four-Strand Core Sutures, J. Hand Surg. Eur., 2008: 33: 412-417.
Craig, P.H., Williams, J.A., Davis, K.W. et al. A Biologic Comparison of Polyglactin 9910 and PGA Sutures, Surg. Gynecol. Obstet., 1995: 141: 1-10.
Reed, A.M. and Gilding, A.K. Biodegradable Polymers for Use in Surgery: PGA - Polylactic Acid Homo and Copolymers: 2. In Vitro Degradation, Polymer, 1981: 22: 494-498.
Katz, A., Mukherjee, D.P., Kaganov, A.L. and Gordon, S. A New Synthetic Monofilament Absorbable Suture made from Polytrimethylene Carbonate, Surg. Gynecol. Obstet., 1992: 161: 213-222.
Roby, M.S., Bennet, S.L. and Liu, C.K. ( 1995). Absorbable Block Copolymers and Surgical Articles Fabricated from Them, US Patent 5,403,347 (to United States Surgical Corporation).
De Persia, R., Guzmán, A., Rivera, L. and Vazquez, J. ( 2005). Mechanics of Biomaterials: Sutures After the Surgery. Applications of Engineering Mechanics in Medicine, Mayaguez, GED - University of Puerto Rico.
Laufman, H. and Rubel, T. Synthetic Absorbable Sutures, Surg. Gynecol. Obstet., 1977: 145: 597-608.
Biber, B.L. and Kuzmina, N.L. Man-Made Yarns for Reabsorbable Surgical Suture Materials, Fibre Chem., 1992: 23: 229-235.
Shalaby, S.W. and Burg, K.J.L. ( 2003). Absorbable and Biodegradable Polymers, Boca Raton, Florida, CRC.
Talor, B. and Bayat, A. Basic Plastic Surgery Techniques and Principles: Choosing the Right Suture Material, Stud. BMJ, 2003: 11: 140-141.
Middleton, J.C. and Tipton, A.J. Synthetic Biodegradable Polymers as Orthopedic Devices, Biomaterials, 2000: 21: 2335-2346.
Daniels, A.U., Chang, M.K.O., Andriano, K.P. Mechanical Properties of Biodegradable Polymers and Composites Proposed for Internal Fixation of Bone, J. Appl. Biomater., 1990 : 1: 57-78.
von Fraunhofer, J.A., Storey, R.J. and Masterson, B.J. Tensile Properties of Suture Materials, Biomaterials, 1988: 9: 324-327.
Middleton, J.C. and Tipton, A.J. Synthetic Biodegradable Polymers as Medical Devices, Med. Plast. Biomater., 1998; 30. Available at: http://www.mddionline.com/article/synthetic-biodegradable-polymers-medical-devices (accessed December 12, 2009).
U.S. Absorbable and Erodible Biomaterials Products Markets, Chap. 10, Mountain View, CA, Frost & Sullivan, 1995.
Goupil, D. ( 1996). Sutures, In: Ratner, B.D., Hoffman, A.S., Schoen, F.J. and Lemons, J.E. (eds), Biomaterials Science: An Introduction to Materials in Medicine, New York, Academic Press, pp. 356-360.
Barrows, T.H. Degradable Implant Materials: A Review of Synthetic Absorbable Polymers and their Applications, Clin. Mat., 1986: 1: 233.
Gilding, D. K and Reed, A.M. Biodegradable Polymers for Use in Surgery-Polyglycolic/Poly(lactic acid) Homo- and Copolymers, Polymer 1979: 20: 1459-1484.
Kohn, J. and Langer, R. ( 1996). Bioresorbable and Bioerodible Materials, In: Ratner, B.D., Hoffman, A.S., Schoen, F.J. and Lemons, J.E. (eds), Biomaterials Science: An Introduction to Materials in Medicine, New York, Academic Press, pp. 64-72.
Pietrzak, W.S., Sarver, D.R. and Verstynen, M.L. Bioabsorbable Fixation Devices: Status for the Craniomaxillofacial Surgeon, J. Craniofac. Surg., 1997: 8: 87.
Pietrzak, W.S., Verstynen, M.L. and Sarver, D.R. Bioabsorbable Polymer Science for the Practicing Surgeon, J. Craniofac. Surg., 1997: 8: 92.
Shalaby, S.W. (ed.) (1994). Biomedical Polymers, Designed to Degrade Systems, New York, Hanser.
Claude, O., Grégory, T., Montemagno, S., Bruneval P. and Masmejean, E.H. Vascular Microanastomosis in Rat Femoral Arteries: Experimental Study Comparing Non-absorbable and Absorbable Sutures, J. Reconstr. Microsurg., 2007: 23: 87-91.
Gallup, D.G., Nolan, T.E. and Smith, R.P. Primary Mass Closure of Midline Incisions with a Continuous Polyglyconate Monofilament Absorbable Suture, Obstet. Gynecol., 1990: 76: 872-875.
Yang, X.N. and Pastorino, U. Are Absorbable Sutures Inadequate to Close the Sternum? J. Thorac. Cardiovasc. Surg., 2006: 132: 1503.
Andrade, M.G.S., Weissman, R. and Reis, S.R.A. Tissue Reaction and Surface Morphology of Absorbable Sutures after In Vivo Exposure, J. Mater. Sci. Mater. Med., 2006: 17: 949-961.
Tan, P.C., Mubarak, S. and Omar, S.Z. Absorbable Versus Non-Absorbable Sutures for Subcuticular Skin Closure of a Transverse Suprapubic Incision, Int. J. Gynecol. Obstet., 2008 : 103: 179-181.
Ferguson Jr, R.E.H., Schuler, K., Thornton, B.P., Vasconez, H.C. and Rinker, B. The Effect of Saliva and Oral Intake on the Tensile Properties of Sutures, Ann. Plast. Surg., 2007: 58: 268-272.
Riddick, D.H., DeGrazia, C.T. and Maenza, R.M. Comparison of Polyglactic and Polyglycolic Acid Sutures in Reproductive Tissue, Fertil. Steril., 1977: 28: 1220-1225.
Nair, L.S. and Laurencin, C.T. Biodegradable Polymers as Biomaterials, Prog. Polym. Sci., 2007: 32: 762-798.
Stridsberg, K.M., Ryner, M. and Albertsson, A.-C. Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture, Adv. Polym. Sci. (Springer), 2002: 157: 41-65.
Kaihara, S., Matsumura, S., Mikos, A.G. and Fisher, J.P. Synthesis of Poly(L-lactide) and Polyglycolide by Ring-Opening Polymerization, Nat. Protoc., 2007: 2: 2767-2771.
Pineros-Fernandez, A., Drake, D.B., Rodeheaver, P.A., Moody, D.L., Edlich, R.F. and Rodeheaver, G.T. Caprosyn, Another Major Advance in Synthetic Monofilament Absorbable Suture, J. Long Term Eff. Med. Implants, 2004: 14: 359-368.
Matthias, E. A Detailed Characterization of PGA Prepared by Solid-state Polycondensation Reaction, Macromol. Chem. Phys., 1999: 200: 2221-2229.
Masuda, T., Matsuda, A., Murata, K. and Yamazaki, S. (1993). Biodegradable Plastic Composition, US Patent 5,227,415.
Devi, K.S. and Vasudevan, P. Absorbable Surgical Sutures, Polym. Rev., 1985: 25: 315-324.
Debus, E.S., Geiger, D., Sailer, M., Ederer, J. and Thiede, A. Physical, Biological and Handling Characteristics of Surgical Suture Material: A Comparison of Four Different Multifilament Absorbable Sutures, Eur. Surg. Res., 1997: 29: 52-61.
Guarino, N., Vallasciani, S.A. and Marrocco, G.J. Urology, 2009: 181: 1318-1323.
Vieira, A.C., Vieira, J.C., Guedes, R.M. and Marques, A.T. Degradation Characterization of Aliphatic Polyesters - In Vitro Study, AIP Conf. Proc., 2008: 1042: 309-311.
Gunatillake, P.A. and Adhikari, R. Biodegradable Synthetic Polymers for Tissue Engineering, Eur. Cell. Mater., 2003: 5: 1-16.
Tormala, P. Biodegradable Self-reinforced Composite Materials: Manufacturing Structure and Mechanical Properties, Clin. Mater., 1992 : 10: 29-34.
Madras, G. ( 2005). Enzymatic Degradation of Polymers, In: Smith, R. (ed.), Biodegradable Polymers for Industrial Applications, Boca Raton, Boston, New York, Washington DC, CRC Press, pp. 406-426.
Piskin, E. Biodegradable Polymers as Biomaterials, J. Biomat. Sci. Polym. Ed., 1995: 6: 775-795.
Ginde, R.M. and Gupta, R.K. In Vitro Chemical Degradation of PGA Pellets and Fibres, J. Appl. Polym. Sci., 1987: 33: 2411-2429.
Chu, C.C. (1983). Survey of Clinically Important Wound Closure, In: Szycher, M. (ed.), Biomaterials in Biocompatible Polymers, Metal and Composites, Lancaster, PA, USA, Tecnomic Publishing, pp. 477-523.
Amecke, B., Bendix, D. and Entenmann, G. Resorbable Polyesters: Composition, Properties, Applications, Clin. Mater . 1992: 10: 47-50.
Holliger, J.O. and Battistone, G.C. Biodegradable Bone Repair Materials, Clin. Orthop. Relat. Res., 1986: 207: 290-305.
Siripitayananon, J., Molloy, R., Bunkird, S., Kleawkla, A., Panjakha, R. and Chooprayoon, P. Effects of Hot-Drawing and Annealing on the Morphology and Mechanical Properties of Biodegradable Polyester Monofilament Fibers, Int. Polym. Process., 2008: 23: 161-167.
Deng, M., Chen, G., Burkley, D. et al. A Study on In Vitro Degradation Behavior of a Poly(Glycolide-co-L-Lactide) Monofilament, Acta Biomater., 2008: 4: 1382-1391.
Hong, J.-T., Cho, N.-S., Yoon, H.-S., Kim, T.-H., Koh, M.-S. and Kim, W.-G. Preparation and Characterization of Biodegradable Poly(Trimethylenecarbonate-ε-Caprolactone)-Block-Poly( p-Dioxanone) Copolymers, J. Polym. Sci. Part A Polym. Chem., 2005 : 43: 2790-2799.
Hong, J.-T., Cho, N.-S., Yoon, H.-S., Kim, T.-H., Koh, M.-S., Kim, W.-G. Biodegradable Studies of Poly(Trimethylenecarbonate-ε-Caprolactone)-Block-Poly(p-Dioxanone), Poly(Dioxanone), and Poly(Glycolideε-Caprolactone) (Monocryl®) Monofilaments, J. Appl. Polym Sci., 2006: 102: 737-743.
Zurita, R., Puiggalí, J. and Rodríguez-Galán, A. Triclosan Release from Coated PGA Threads, Macromol. Biosci., 2006 : 6: 58-69.
de Werra, C., Rendano, F., D’Armiento, F., Somma, P. and Forestieri, P. Comparison of Five Synthetic Absorbable Suture Materials in Intestinal Anastomosis: Experimental Study in Rats [Confronto tra cinque materiali di sutura sintetici riassorbibili nelle anastomosi intestinali: studio sperimentale nel ratto.], Chir. Ital., 2003: 55: 227-233.
Clough, J.V. and Alexander Williams, J. Surgical and Economic Advantages of Polyglycolic-Acid Suture Material in Skin Closure, Lancet, 1975: 7900: 194-195.
Bezwada, R.S., Jamiolkowski, D.D., Lee, I.-Y. et al. Monocryl® Suture, A New Ultra-Pliable Absorbable Monofilament Suture, Biomaterials, 1995: 16: 1141-1148.
Channuan, W., Siripitayananon, J., Molloy, R. and Mitchell, G.R. Defining the Physical Structure and Properties in Novel Monofilaments with Potential for Use as Absorbable Surgical Sutures Based on a Lactide Containing Block Terpolymer, Polymer, 2008: 49: 4433-4445.
Arcuri, C., Cecchetti, F., Dri, M., Muzzi, F. and Bartuli, F.N. Suture in Oral Surgery. A Comparative Study, Minerva Stomatol., 2006: 55: 17-31.
Moy, R.L. and Kaufman, A.J. Clinical Comparison of Vicryl® (Vicryl®) and Polytrimethylene Carbonate (Maxon) Suture Material, J. Dermatol. Surg. Oncol., 1991: 17: 667-669.
Rodeheaver, G.T., Foresman, P.A., Brazda, M.T. and Edlich, R.F. A Temporary Nontoxic Lubricant for a Synthetic Absorbable Suture, Surg. Gynecol. Obstet., 1987: 164: 17-21.
Trimbos, J.B. and Klopper, P.J. Knot Security of Synthetic Absorbable Suture Material: A Comparison of PGA and Polyglactin-910, Eur. J. Obstet. Gynecol Reprod. Biol., 1985: 19: 183-190.
Solhaug, J.H. and Heimann, P. PGA (PGA, Dexon) Sutures in Neck Surgery, Acta Chir. Scand., 1975: 141: 326-328.
Edlich, R.F., Panek, P.H. and Rodeheaver, G.T. Surgical Sutures and Infection: A Biomaterial Evaluation, J. Biomed. Mater. Res., 1974: 8: 115-126.
Dardik, H., Dardik, I. and Laufman, H. Clinical Use of PGA Polymer as a New Absorbable Synthetic Suture, Am. J. Surg., 1971: 121: 656-660.
Bergman, F.O., Borgström, S.J. and Holmlund, D.E. Synthetic Absorbable Surgical Suture Material (PGA). An Experimental Study, Acta Chir. Scand., 1971: 137: 193-200.
Tanabe, T., Nakajima, S., Matsunami, S, Tamura, K. and Shiono, T. New Surgical Suture: Synthetic Absorbable PGA Suture, Shujutsu, 1971: 25: 273-279.
Dardik, H., Dardik, I., Katz, A.R. and Laufman, H. A New Absorbable Synthetic Suture in Growing and Adult Primary Vascular Anastomoses: Morphologic Study, Surgery, 1970: 68: 1112-1121.
Nielsen, N.V., Hojbjerg, J.C. and Westerlund, E. Absorbable Sutures (Dexon and Vicryl®) in the Corneolimbal Incision, Used in Lens Implantation Surgery, Acta Ophthalmol. 1980 : 58: 48-55.
Martyn, J.W. Clinical Experience with a Synthetic Absorbable Surgical Suture, Surg. Gynecol. Obstet, 1975 : 140: 747-748.
Weir, N. and Buchanan, F.J. ( 2000). Accelerated Test Methods for the Evaluation of Bioabsorbable Suture Materials, In: Nephew International Symposium - Tissue Engineering: Advances in Tissue Engineering, Biomaterials and Cell Signalling, University of York, York, England, p. 144.
Liu, S.-A., Tung, K.-C., Cheng, C.-C. and Chiu, Y.-T. The Impact of Different Closure Materials on Pharyngeal Wound Healing: An Experimental Animal Study, Eur. Arch. OtoRhinoLaryngol., 2008: 265: 227-231.
Bezwada, R.S., Jamiolkowski, D.D. and Shalaby, S.W. ( 1991). Radiation Sterilizable Bioabsorbable Sutures, In: Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the International Biomaterials Symposium, Scottsdale, Arizona, USA, p. 186.
Albersson, A.C. and Varma, I.K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications, Biomacromolecules, 2003: 4: 1466-1486.
Li, S., Tenon, M., Garreau, H., Braud, C. and Vert, M. Enzymatic Degradation of Stereocopolymers Derived from L-, DL- and Meso-Lactides, Polym. Degrad. Stab., 2000 : 67: 85-90.
Zhou, S., Deng, X., Li, X., Jia, W. and Liu, L. Synthesis and Characterization of Biodegradable Low Molecular Weight Aliphatic Polyesters and Their Use in Protein-Delivery Systems, J. Appl. Polym. Sci., 2004: 91: 1848-1856.
Bergsma, J.E., Rozema, F.R., Bos, R.R.M., Boering, G., Bruijn W.C. and Pennings, A.J. In Vivo Degradation and Biocompatibility Study of In Vitro Pre-Degraded As-Polymerized Polylactide Particles, Biomaterials, 1995 : 16: 267-274.
Lim, L.-T., Auras, R. and Rubino, M. Processing Technologies for Poly(Lactic Acid), Prog. Polym. Sci., 2008: 33: 820-852.
Jalabert, M., Fraschini, C. and Prud’Homme, R.E. Synthesis and Characterization of Poly(L-Lactide)s and Poly(D-Lactide)s of Controlled Molecular Weight, J. Polym. Sci. Part A Polym. Chem., 2007: 5: 1944-1955.
Takizawa, K., Nulwala, H., Hu, J., Yoshinaga, K. and Hawker, C.J. Molecularly Defined (L)-Lactic Acid Oligomers and Polymers: Synthesis and Characterization, J. Polym. Sci. Part A Polym. Chem., 2008 : 46: 5977- 5990.
Penning, J.P., Dijkstra, H. and Pennings, A.J. Preparation and Properties of Absorbable Fibres from L-Lactide Copolymers, Polymer, 1993: 34: 942-951.
Mehta, R., Kumar, V., Bhunia, H. and Upadhyay, S.N. Synthesis of Poly(Lactic Acid): A Review, J. Macromol. Sci. Polym. Rev., 2005: 45: 325-349.
Kim, E., Shin, E.W., Yoo, I.-K. and Chung, J.S. Characteristics of Heterogeneous Titanium Alkoxide Catalysts for Ring-Opening Polymerization of Lactide to Produce Polylactide, J. Mol. Catal. A Chem., 2009: 298: 36-39.
Kulkarni, R.K., Pani, K.C., Neuman, C. and Leonard, F. Polylactic Acid for Surgical Implants, Arch. Surg., 1966: 93: 839-843.
Kaplan, D.S. (1982). Surgical Suture Derived from Segmented PolyetherEster Block Copolymers, US Patent 4,314,561.
Baptist, J.N. and Ziegler, J.B. (1965). Method of Making Absorbable Surgical Sutures from Poly Beta Hydroxy Acids, US Patent 3,225,766.
Schmitt, E.E. and Polistina, R.A. (1967). Surgical Sutures, US Patent 3,297,033.
Schneider, A.K. (1972). Polylactide Sutures, US Patent 3,636,956.
Gogolewski, S. and Pennings, A.J. (1992). Filament Material Polylactide Mixtures, US Patent 5,110,852.
Schneider, A.K. (1974). Polylactide Fabric Graphs for Surgical Implantation, US Patent 3,797,499.
Gogolewski, S. and Pennings, A.J. (1990). Method of Preparing Polyester Filament Material, US Patent 4,915,893.
Tomihata, K., Sasaki, I. and Suzuki, M. ( 1998). Surgical Suture and Method for Preparation Thereof, US Patent 5,797,962.
Lam, K.H., Nijenhuis, A.J., Bartels, H. et al. Reinforced Poly(L-Lactic Acid) Fibres as Suture Material, J. Appl. Biomater., 1995 : 6: 191-197.
Chen, Q.Z., Blaker, J.J. and Boccaccini, A.R. Bioactive and Mechanically Strong Bioglass®-Poly(D,L-Lactic Acid) Composite Coatings on Surgical Sutures, J. Biomed. Mater. Res. B Appl. Biomater., 2006: 76: 354-363.
Kangas, J., Paasimaa, S., Mäkelä, P. et al. Comparison of Strength Properties of Poly-L/D-Lactide (PLDLA) 96/4 and Polyglyconate (Maxon®) Sutures: In vitro, in the Subcutis, and in the Achilles Tendon of Rabbits, J. Biomed. Mater. Res., 2001 : 58: 121-126.
Lou, C.-W., Yao, C.-H., Chen, Y.-S., Hsieh, T.-C., Lin, J.-H. and Hsing, W.-H. Manufacturing and Properties of PLA Absorbable Surgical Suture, Text. Res J., 2008: 78: 958-965.
Zhou, Z.H., Liu, X.P., Liu, Q.Q. and Liu, L.H. Morphology, Molecular Mass Changes, and Degradation Mechanism of Poly-L-Lactide in Phosphate-Buffered Solution, Polym . Plast. Technol. Eng., 2009: 48: 115-120.
Mäkelä, P., Pohjonen, T., Törmälä, P., Waris, T. and Ashammakhi, N. Strength Retention Properties of Self-Reinforced Poly L-Lactide (SR-PLLA) Sutures Compared with Polyglyconate (Maxon®) and Polydioxanone (PDO) Sutures. An In Vitro Study, Biomaterials, 2002: 23: 2587-2592.
Tormala, P. Ultra-High Strength, Self-Reinforced Absorbable Polymeric Composites for Applications in Different Disciplines of Surgery, Clin. Mater., 1993: 13: 35-40.
Vainionpää, S., Rokkanen, P. and Törmälä, P. Surgical Applications of Biodegradable Polymers in Human Tissues, Prog. Polym. Sci., 1989: 14: 679-716.
Ikada, Y. and Tsuji, H. Biodegradable Polyesters for Medical and Ecological Applications. Macromol. Rapid Commun., 2000: 21: 117-132.
Heino, A., Naukkarinen, A., Kulju, T., Törmälä, P., Pohjonen, T. and Mäkelä, E.A. Characteristics of Poly(L-)Lactic Acid Suture Applied to Fascial Closure in Rats, J. Biomed. Mater. Res., 1996: 30: 187-192.
Gunatillake, P., Mayadunne, R. and Adhikari, R. Recent Developments in Biodegradable Synthetic Polymers, Biotechnol. Annu. Rev., 2006: 12: 301-347.
Miller, R.A., Brady, J.M. and Cutright, D.E. Degradation Rates of Oral Resorbable Implants (Polylactates and Polyglycolates: Rate Modification With Changes in PLA/PGA Copolymer Ratios, J. Biomed. Mater. Res., 1977: 11: 711-719.
Matičić, D., Kreszinger, M., Pirkić, B., Vnuk, D., Radišić, B. and Gračner, D. Comparative Study of Skin Closure in Dogs with Polypropylene and Polyglactin 910, Veterinarski Arhiv., 2005: 75: 383-390.
Azab, A.K., Doviner, V., Orkin, B. et al. Biocompatibility Evaluation of Crosslinked Chitosan Hydrogels After Subcutaneous and Intraperitoneal Implantation in the Rat, J. Biomed. Mater. Res. A, 2007: 83A: 414-422.
Piñeros-Fernandez, A., Salopek, L.S., Rodeheaver, P.F., Drake, D.B., Edlich, R.F. and Rodeheaver, G.T. A Revolutionary Advance in Skin Closure Compared to Current Methods, J. Long Term Eff. Med. Implants, 2006: 16: 19-27.
Katti, D.S., Robinson, K.W., Ko, F.K., Laurencin, C.T. Bioresorbable Nanofiber-Based Systems for Wound Healing and Drug Delivery: Optimization of Fabrication Parameters, J. Biomed. Mater. Res. B Appl. Biomater., 2004: 70: 286-296.
Astete, C.E. and Sabliov, C.M. Synthesis and Characterization of PLGA Nanoparticles, J. Biomater. Sci. Polym. Ed., 2006: 17: 247-289.
Martin, H.C.O. and Motbey, J. Use of Polyglyconate Suture in Paediatric Gastrointestinal Anastomosis, Aust. N. Z. J. Surg., 1993: 63: 883-887.
Farrar, D.F. and Gillson, R.K. Hydrolytic Degradation of Polyglyconate B: The Relationship Between Degradation Time, Strength and Molecular Weight, Biomaterials 2002: 23: 3905-3912.
Flyger, H.L., Hakansson, T.U. and Jensen, LP Single Layer Colonic Anastomosis with a Continuous Absorbable Monofilament Polyglyconate Suture, Eur. J. Surg., 1995: 161: 911-913.
Rodeheaver, G.T., Salopek, L.S., Green, C.W. et al. Effectiveness of Glycomer 631 Monofilament Sutures in Closing Musculoaponeurotic Incisions, J. Long Term Eff. Med Implants, 1998: 8: 225-231.
Huang, G.-K., Li, H.-Q. and Wu, X.-M. Study on Microvascular Anastomosis of Arteries with Absorbable Polyglyconate Suture, Microsurg., 1995: 16: 505-509.
Tomihata, K., Suzuki, M. and Tomita, N. Handling Characteristics of Poly(L-lactide-Co-ε-Caprolactone) Monofilament Sutures, Biomed. Mater. Eng., 2005: 15: 381-391.
Baimark, Y., Molloy, R., Molloy, N., Siripitayananon, J., Punyodom, W. and Sriyai, M. Synthesis, Characterisation and Melt Spinning of a Block Copolymer of L-Lactide and ∈-Caproactone for Potential Use as an Absorbable Monofilament Surgical Suture, J. Mater. Sci. Mater. Med., 2005 : 16: 699-707.
Yang, K.-K., Li, X.-L. and Wang .Y-Z. Poly(p-Dioxanone) and its Copolymers, J. Macromol. Sci. Polym. Rev., 2002: 42: 373-398.
Merrell, S.W. and Lawrence, P.F. Initial Evaluation of Absorbable Polydioxanone Suture for Peripheral Vascular Surgery, J. Vasc. Surg., 1991: 14: 452-457.
Maurus, P.B. and Kaeding, C.C. Bioabsorbable Implant Material, Review. Oper. Tech. Sports Med., 2004: 12: 158-160.
Ray, J.A., Doddi, N. and Regula, D. Polydioxanone (PDO), A Novel Monofilament Synthetic Absorbable Suture, Surg. Gynecol. Obstet., 1981: 153: 497-507.
Boland, E.D., Coleman, B.D., Barnes, C.P., Simpson, D.G., Wnek, G.E. and Bowlin, G.L. Electrospinning Polydioxanone for Biomedical Applications, Acta Biomater., 2005: 1: 115-123.
Mazzarese, P.M., Faulkner, B.C., Gear, A.J.L., Watkins, F.H., Rodeheaver, G.T. and Edlich, R.F. Technical Considerations in Knot Construction. Part II. Interrupted Dermal Suture Closure, J. Emerg. Med., 1997: 15: 505-511.
Brown, R.P. Knotting Technique and Suture Materials, Br. J. Surg., 1992: 79: 399-400.
Metz, S.A., Chegini, N. and Masterson, B.J. In Vivo and In Vitro Degradation of Monofilament Absorbable Sutures, PDO® and Maxon®, Biomaterials, 1990: 11: 41-45.
Rodeheaver, G.T., Beltran, K.A., Green, C.W. et al. Biomechanical and Clinical Performance of a New Synthetic Monofilament Absorbable Suture, J. Long-Term Eff. Med., 1996: 6: 181-198.
Van Rijssel, E.J.C., Brand, R., Admiraal, C., Smit, I. and Trimbos, J.B. Tissue Reaction and Surgical Knots: The Effect of Suture Size, Knot Configuration, and Knot Volume, Obstetr. Gynecol., 1989: 74: 64-68.
Im, J.N., Kim, J.K., Kim, H.-K., In, C.H., Lee, K.Y. and Park, W.H. In vitro and In vivo Degradation Behaviors of Synthetic Absorbable Bicomponent Monofilament Suture Prepared with Poly(p-dioxanone) and its Copolymer, Polym. Degrad. Stabil., 2007: 92: 667-674.
Barber, F.A. and Click, J.N. The Effect of Inflammatory Synivial Fluid on the Breaking Strength of New Long Lasting Sutures, J. Arthrosc. Relat. Surg., 1992: 8: 437-411.
Kulkarni, A., Reiche, J., Hartmann, J., Kratz, K. and Lendlein, A. Selective Enzymatic Degradation of Poly(ε-caprolactone) Containing Multiblock Copolymers, Eur. J. Pharm. Biopharm., 2008: 68: 46-56.
Storck, M., Orend, K.-H. and Schmitz-Rixen, T. Absorbable Suture in Vascular Surgery, Vasc. Surg., 1993 : 27: 413-424.
Molea, G., Schonauer, F., Bifulco, G. and D’Angelo, D. Comparative Study on Biocompatibility and Absorption Times of Three Absorbable Monofilament Suture Materials (Polydioxanone, Poliglecaprone 25, Glycomer 631), Brit. J. Plast. Surg., 2000 : 53: 137-141.
Song, C.X., Cui, X.M. and Schindler, A. Biodegradable Copolymers Based on p-Dioxanone for Medical Application, Med. Biol. Eng. Comput., 1993: 31: S147-S150.
Ingle, N.P., King, M.W., Leung, J.C. and Batchelor, S. ( 2006). Barbed Suture Anchoring Strength: Applicability to Dissimilar Polymeric Materials, In: Transactions - 7th World Biomaterials Congress, Curran Associates, Inc, Sydney, Australia, 17-21 May, 2004, p. 1260.
Murtha, A.P., Kaplan, A.L., Paglia, M.J., Mills, B.B., Feldstein, M.L. and Ruff, G.L. Evaluation of a Novel Technique for Wound Closure Using a Barbed Suture, Plast. Reconstr. Surg., 2006: 117: 1769-1780.
Vracko, J. and Pegan, V. Single-layer Closure of a Subcostal Incision Using a Monofilament Absorbable Suture Material - Comparison of Polydioxanone (PDO) and Polyglyconate [Jednoslojno zatvaranje supkostalnih incizija monofilamentnim apsorpcijskim savnim materijalom-usporedba polidioksanona (PDO) i poliglikonata]. Acta Chir. Iugosl., 1989: 36: 15-25.
Anderson, E., Sondenaa, K. and Holter, J. A Comparative Study of Polydioxanone (PDO®) and Polyglactin 910 (Vicryl®®) in Colonic Anastomoses in Rats, Int. J. Colorectal Dis., 1989: 4: 251-254.
Ahmed, H.A. and Goldie, B.S. Comparison of the Mechanical Properties of PGA-Trimethylene Carbonate (Maxon) and Polydioxanone Sutures (PDO2) Used for Flexor Tendon Repair and Active Mobilization, J. Hand Surg., 2002: 27B: 329-332.
Keçeligil, H.T., Kolbakir, F., Akar, H., Konuralp, C., Demir, Z. and Demirağ, M.K. Sternal Closure with Resorbable Synthetic Loop Suture Material in Children, J. Pediat. Surg., 2000: 35: 1309-1311.
Li, X., King, M. and MacDonald, P. Comparative Study of Knot Performance and Ease of Manipulation of Monofilament and Braided Sutures for Arthroscopic Applications, Knee Surg. Sport Traumatol. Arthrosc., 2004: 12: 448-452.
Chusak, R.B. and Dibbell, D.G. Clinical Experience with Polydioxanone Monofilament Absorbable Sutures in Plastic Surgery, Plast. Reconstr. Surg., 1983: 72: 217-221.
Kontio, R., Ruuttila, P., Lindroos, L. et al. Biodegradable Polydioxanone and Poly (L/D) Lactide Implants: An Experimental Study on Peri-implant Tissue Response, Int. J. Oral Max. Surg., 2006: 34: 766-776.
Muftuoglu, M.A., Ozkan, E. and Saglam, A. Effect of Human Pancreatic Juice and Bile on the Tensile Strength of Suture Materials, Am. J. Surg., 2004: 188: 200-203.
Sasaki, G.H., Komorowska-Timek, E.D., Bennett, D.C. and Gabriel, A. An Objective Comparison of Holding, Slippage, and Pull-out Tensions for Eight Suspension Sutures in the Malar Fat Pads of Fresh-frozen Human Cadavers, Aesthet. Surg. J., 2008: 28: 387-396.
Dencker, A., Lundgren, I. and Sporrong, T. Suturing After Childbirth - A Randomised Controlled Study Testing a New Monofilament Material, BJOG: Int. J. Obstetr. Gynaecol., 2006: 113: 114-116.
Jacquel, N., Lo, C.-W., Wei, Y.-H., Wu, H.-S. and Wang, S.S. Isolation and Purification of Bacterial Poly(3-hydroxyalkanoates), Biochem. Eng. J., 2008: 39: 5-27.
Rocha, R.C.S., Silva, L.F., Taciro, M.K. and Pradella, J.G.C. Production of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) with a Broad Range of 3HV Content at High Yields by Burkholderia sacchari IPT 189, World J Microbiol Biotechnol., 2008: 24: 427-431.
Anderson, A.J. and Dawes, E.A. Occurrence, Metabolism, Metabolic Role, and Industrial Use of Bacterial Polyhydroxyalkonoates, Microbiol. Rev., 1990: 54: 450-472.
Steinbüchel, A. ( 2002). Biopolymers, Weinheim, Wiley-VCH, Vol. 10.
Chen, X., Yang, X., Pan, J., Wang, L. and Xu, K. Degradation Behaviors of Bioabsorbable P3/4HB Monofilament Suture, In Vitro and In Vivo, 2010: 92B: 447-455.
Fedorov, M.B., Vikhoreva, G.A., Kil’deeva, N.R., Kechek’Yan, A.S., Gerasimov, V.I. and Gal’braikh, L.S. Structural Changes in Films and Properties of Surgical Sutures with Polyhydroxybutyrate Coating, Fibre Chem., 2008: 40: 118-122.
Doi, Y., Tamaki, A., Kunioka, M. and Saito, T. Biodegradation Of Microbial Copolyesters: Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxybutyrate-co-3-hydroxybutyrate), Macromolecules, 1990: 23: 26-31.
Chu, C.C. ( 1991). Recent Advancements in Suture Fibres for Wound Closure, In: Vigo, T.L. and Turbak, A.F. (eds), High-tech Fibrous Materials, Washington, DC, ACS Symposium Series 457, pp. 167-211.
Rathke, T.D. and Hudson, S.M. Review of Chitin and Chitosan as Fiber and Film Formers, J. Macromol. Sci - Rev. Macromol. Chem. Phys., 1994: C34: 375-437.
Muzzarelli, R.A.A. and Muzzarelli, C. Chitosan Chemistry: Relevance to the Biomedical Sciences, Adv. Polym. Sci., 2005: 186: 151-209.
Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., Sashiwa, H., Domb, A.J. Chitosan Chemistry and Pharmaceutical Perspectives, Chem. Rev., 2004: 104: 6017-6084.
Pillai, C.K.S., Paul, W. and Sharma, C.P. (2010). Chitosan: Manufacture, Properties & Uses, In: Columbus, F. (ed.), Chitosan: Manufacture, Properties & Uses, Hauppauge, NY, Nova Science Publishers, Inc. (in press).
Nishimura, K., Nishimura, S., Seo, H., Nishi, N., Tokura, S. and Azuma, I. Macrophage Activation with Multi-porous Beads Prepared from Partially Deacetylated Chitin, J. Biomed. Mater. Res., 1986: 20: 1359-1372.
Zikakis, J.P. (1984). Chitin, Chitosan and Related Enzymes, New York, Academic .
Singh, D.K. and Ray, A.R. Biomedical Applications of Chitin, Chitosan, and their Derivatives, Polym. Rev., 2000: 40: 69-83.
Kurita, K. Chitin and Chitosan: Functional Biopolymers from Marine Crustaceans, Mar. Biotechnol., 2006: 8: 203-226.
Hirano, S. Chitin Biotechnology Applications, Biotechnol. Ann. Rev., 1996: 2: 237-258.
Rinaudo, M. Main Properties and Current Applications of Some Polysaccharides as Biomaterials, Polym. Int., 2008: 57: 397-430.
Pillai, C.K.S., Paul, W. and Sharma, C.P. Chitin and Chitosan Polymers: Chemistry, Solubility and Fiber Formation, Progr. Polym. Sci., 2009: 4: 641-678.
Desai, A.A. Biomedical Implantable Materials Sutures, Asian Text. J., 2005: 14: 54-56.
Austin, P.R., Brine, C.J., Castle, J.E. and Zikakis, J.P. Chitin: New Facets of Research, Science, 1981 : 212: 749-753.
Mikhailov, G.M. and Lebedeva, M.F. Procedures for Preparing Chitin-based Fibers, Russ. J. Appl. Chem., 2007: 80: 685-694.
Daly, W.H. and Macossay, J. An Overview of Chitin and Derivatives for Biodegradable Materials Applications, Fibres Text East Eur., 1997 : 5: 22-27.
Kifune, K., Inoue, K. and Mori, S. ( 1984). Process for the Production of Chitin Fibers, US Patent 4,431,601.
Brine, C.J. and Austin, P.R. ( 1975). Renaturated Chitin Fibrils, Films and Filaments, In: Church, T.D. (ed), Marine Chemistry in Coastal Environment, Washington, DC, ACS Symposium Series, Vol. 18, p. 505.
Austin, P.R. ( 1975). Solvents for and Purification of Chitin, US Patent 3,892,731 and Purification of Chitin, US Patent 3,879, 377.
Tokura, S. and Seo, H. ( 1984). Manufacture of Chitosan Fiber and Film, Japanese Patent 59,116,418.
Unitika Co. Ltd. (1982 ). Chitin Powder and its Production, Japanese Patent 57,139,101.
Unitika Co. Ltd. (1983 ). Production of Chitin Yarn, Japanese Patent 58,214,513.
Unitika Co. Ltd. (1983 ). Prodcution of Chitin Yarn, Japanese Patent 58,214,512.
Tokura, S., Nishi, N. and Noguchi, J. Studies on Chitin III: Preparation of Chitin Fibres, Polym. J., 1979: 11: 781-786.
Austin, P.R. and Brine, C.J. (1976). Chitin Films and Fibers, US Patent 4,029,727.
Nakajima, M., Atsumi, K. and Kifune, K. ( 1984). Development of Absorbable Sutures from Chitin, In: Zikakis, J.P. (ed.), Chitin, Chitosan and Related Enzymes, New York, Harcourt Brace Janovich, p. 407.
Yano, H., Iriyama, K., Nishiwaki, H. and Kifune, K. Effect of N-acetyl-D-glucosamine on Wound Healing in Rats, Mie. Med. J., 1985: 35: 53-56.
Minami, S., Okamoto, Y., Matsuhashi, A. and Shigemasa, Y. (1992). Production, Properties, and Some New Applications of Chitin and its Derivatives, In: Tokura, S. and Azuma, I. (eds), Chitin Derivatives of Life Sciences, Sapparo, Jpn. Chitin Soc, pp. 333-351.
Kifune, K., Yamaguchi, Y. and Kishimoto, S. Wound Healing Effect of Chitin Surgical Dressings, Trans. Soc. Biomater., 1988: 11: 216-218.
Zhukovskii, V.A. Problems and Prospects for Development and Production of Surgical Suture Materials, Fibre Chem., 2008: 40: 208-216.
Mikhailov, G.M. and Lebedeva, M.F. Procedures for Preparing Chitin-based Fibers, Russ. J. Appl. Chem., 2007: 80: 685-694.
Paluch, D., Szosland, L., Staniszewska-Kuś, J., Solski, L., Szymonowicz, M. and Gebarowska, E. The Biological Assessment of the Chitin Fibres, Polim. Med., 2000: 30: 3-31.
Hirano, S., Zhang, M., Nakagawa, M. and Miyata, T. Wet Spun Chitosan-Collagen Fibers, their Chemical N-modifications, and Blood Compatibility, Biomaterials, 2000: 21: 997-1003.
Pillai, C.K.S. and Sharma, C.P. Electrospinning of Chitin and Chitosan Nanofibres, Trends Biomater. Artif. Organs, 2009: 23: 175-197.
Machinami, R., Kifune, H., Kawaide, A. and Tsurutani, R. A Histological Study of the Fate of Chitin Suture Material after Intramuscular Suturing, Med. Sci. Res., 1991: 19: 391-392.
Nakajima, M., Atsumi, K. and Kifune, K. ( 1984). Development of the New Absorbable Suture by Chitin, In: Transactions of the Annual Meeting of the Society for Biomaterials in Conjunction with the International Biomaterials Symposium, Washington, DC, USA, p. 28.
Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A. and Barmar, M. Surface Characteristics of Polyurethane Elastomers Based on Chitin/1,4-butane diol Blends, Int. J. Biol. Macromol., 2009: 44: 182-185.
Zia, K.M., Zuber, M., Bhatti, I.A., Barikani, M. and Sheikh, M.A. Evaluation of Biocompatibility and Mechanical Behavior of Polyurethane Elastomers based on Chitin/1,4-butane diol Blends, Int. J. Biol. Macromol., 2009: 44: 18-22.
Zia, K.M., Zuber, M., Bhatti, I.A., Barikani, M. and Sheikh, M.A. Evaluation of Biocompatibility and Mechanical Behavior of Chitin-based Polyurethane Elastomers . Part-II: Effect of Diisocyanate Structure, Int. J. Biol. Macromol., 2009: 44: 23-28.
Zia, K.M., Bhatti, I.A., Barikani, M., Zuber, M. and Sheikh, M.A. XRD Studies of Chitin-based Polyurethane Elastomers, Int. J. Biol. Macromol., 2008: 43: 136-141.
Zia, K.M., Barikani, M., Zuber, M., Bhatti, I.A. and Sheikh, M.A. Molecular Engineering of Chitin based Polyurethane Elastomers, Carbohydr. Polym., 2008: 74: 149-158.
Xiong, S.-H., Yu, L., Liao, H. et al. Morphological Study on Myoblast L6 of Rats Co-cultured with Chitin Suture In Vitro, Chin. J. Clin. Rehab., 2006: 10: 46-48.
Lucca, G.V., Kezar III, H.S. and O’Brien, J.P. (1991 ). High Strength Fibers from Chitin Derivatives, US Patent 5,021,207.
Dutaa, P.K. and Ravi Kumar, M.N.V. ( 1997). Waste Utilization: Chitosan Fibres by Direct Dissolution, In: Indian Chemist Convention, New Delhi, 17-20 December.
Phongying, S., Aiba, S.-I. and Chirachanchai, S. Direct Chitosan Nanoscaffold Formation via Chitin Whiskers, Polymer, 2007 : 48: 393-400.
Knaul, J., Hooper, M., Chanyi, C. and Creber, K.A.M. Improvements in the Drying Process for Wet-spun Chitosan Fibers, J. Appl. Polym. Sci., 1998: 69: 1435-1444.
Knaul, J.Z. and Creber, K.A.M. Coagulation Rate Studies of Spinnable Chitosan Solutions, J. Appl. Polym. Sci., 1997: 66: 117-127.
Fan, L., Zheng, H., Xu, Y., Huang, J. and Zhang, C. Preparation and Properties of Chitosan/Konjac Glucomannan Blend Fibers, J. Macromol. Sci. Part A: Pure Appl. Chem., 2007: 44: 439-443.
Rahbaran, S., Redlinger, S. and Einzmann, M. New Bioactive Cellulosic Fibers, Chem. Fibers Int., 2006 : 56: 25-29.
Onishi, H. and Machida, Y. Biodegradation and Distribution of Watersoluble Chitosan in Mice, Biomaterials, 1999: 20: 175-182.
Varum, K.M., Myhr, M.M., Hjerde, R.J.N. and Smidsrod, O. In vitro Degradation Rates of Partially N-acetylated Chitosans in Human Serum, Carbohydr. Res., 1997: 299: 99-101.
Sashiwa, H., Saimoto, H., Shigemasa, Y., Ogawa, R. and Tokura, S. Lysozyme Susceptibility of Partially Deacetylated Chitin, Int. J. Biol. Macromol., 1990: 12: 295-296.
Shigemasa, Y., Saito, K., Sashiwa, H. and Saimoto, H. Enzymatic Degradation of Chitins and Partially Deacetylated Chitins, Int. J. Biol. Macromol., 1994: 16: 43-49.
Shigemasa, Y. and Minami, S. Applications of Chitin and Chitosan for Biomaterials, Biotechnol. Genet. Engg. Rev., 1996: 17: 413-420.
McCurdy, J.D. ( 1992). FDA and the Use of Chitin and Chitosan Derivatives, In: Brine, C.J., Sanford, P.A. and Zikakis, J.P. (eds), Advances in Chitin and Chitosan, London, New York, Elsevier Applied Science, pp. 659-662.
Seo, H. Processing and Utilization of Chitin and Chitosan . Sen-i Gakkaishi, 1990: 46: 564-569
Amano, K. and Ito, E. The Action of Lysozyme on Partially Deacetylated Chitin, Eur. J. Biochem., 1978: 85: 97-104.
Pangburn, S.H., Trescony, P.V. and Heller, J. Lysozyme Degradation of Partially Deacetylated Chitin its Films and Hydrogels, Biomaterials, 1982: 3: 105-108.
Tomihata, K. and Ikada, Y. In Vitro and In Vivo Degradation of Films of Chitin and its Deacetylated Derivatives, Biomaterials, 1997: 18: 567-575.
Muzzarelli, R. Depolymerization of Methyl Pyrrolidinone Chitosan by Lysozyme, Carbohydr. Polym., 1992: 19: 29-34.
Berscht, P.C., Nies, B., Liebendörfer, A. and Kreuter, J. In Vitro Evaluation of Biocompatibility of Different Wound Dressing Materials, J. Mater., Sci.: Mater. Med., 1995: 6: 201-220.
Chung, L.Y., Schmidt, R.J., Hamlyn, P.F., Sagar, B.F., Andrews, A.M. and Turner, T.D. Biocompatibility of Potential Wound Management Products: Hydrogen Peroxide Generation by Fungal Chitin/Chitosans and Their Effects on the Proliferation of Murine L929 Fibroblasts in Culture, J. Biomed. Mater. Res., 1998 : 39: 300-307.
Ohkawa, K., Tatehata, H. and Yamamoto, H. Formation and Biodegradation of Natural Polymer Hydrogels, Fibers, and Capsules, Kobunshi Ronbunshu, 1999: 56: 583-596.
Tsai, W.C., Chu, C.C., Chiu, S.S. and Yao, J.Y. In Vitro Quantitative Study of Newly Made Antibacterial Braided Nylon Sutures, Surg. Gynecol. Obstetr., 1987: 165: 207-211.
Kovtun, E.A., Plygan, E.P., Gudz, O.V. and Sergeev, V.P. Creation of Sutures with Antimicrobial Properties, Fibre Chem., 2000: 32: 287-292.
Blaker, J.J., Boccaccini, A.R. and Nazhat, S.N. Thermal Characterizations of Silver-containing Bioactive Glass-coated Sutures, J. Biomater. Appl., 2005: 20: 81-98.
Blaker, J.J., Nazhat, S.N. and Boccaccini, A.R. Development and Characterisation of Silver-doped Bioactive Glass-coated Sutures for Tissue Engineering and Wound Healing Applications, Biomaterials, 2004: 25: 1319-1329.
Rozzelle, C.J., Leonardo, J. and Li, V. Antimicrobial Suture Wound Closure for Cerebrospinal Fluid Shunt Surgery: A Prospective, Double-blinded, Randomized Controlled Trial, J. Neurosurg.: Pediatr., 2008: 2: 111-117.
Al-Qattan, M.M. Vicryl® Rapide® versus Vicryl®® Suture in Skin Closure of the Hand in Children: A Randomized Prospective Study, J. Hand Surg., 2005: 30: 90-91.
Storch, M.L., Rothenburger, S.J. and Jacinto, G. Experimental Efficacy Study of Coated Vicryl® plus antibacterial suture in Guinea Pigs Challenged with Staphylococcus aureus, Surg. Infect., 2004: 5: 281-288.
Marco, F., Vallez, R., Gonzalez, P., Ortega, L., De La Lama, J. and Lopez-Duran, L. Study of the Efficacy of Coated Vicryl® Plus® Antibacterial Suture in an Animal Model of Orthopedic Surgery, Surg. Infect., 2007: 8: 359-365.
Gupta, B., Jain, R., Anjum, N. and Singh, H. Preparation of Antimicrobial Sutures by Preirradiation Grafting of Acrylonitrile onto Polypropylene Monofilament. III. Hydrolysis of the Grafted Suture, J. Appl. Polym. Sci., 2004: 94: 2509-2516.
Fedorov, M.B., Vikhoreva, G.A., Kil’deeva, N.R., Mokhova, O.N., Bonartseva, G.A. and Gal’braikh, L.S. Antimicrobial Activity of Core-sheath Surgical Sutures Modified with Poly-3-hydroxybutyrate, Appl. Biochem. Microbiol., 2007: 43: 611-615.
Bide, M., Bachuwar, A., Phaneuf, M. et al. Fiber-Antibiotic Interactions in the Development of Infection-resistant Sutures, AATCC Rev., 2007: 7: 44-48.
Anjum, N., Gulrez, S.K.H., Singh, H. and Gupta, B. Development of Antimicrobial Polypropylene Sutures by Graft Polymerization. I. Influence of Grafting Conditions and Characterization, J. Appl. Polym. Sci., 2006: 101: 3895-3901.
Gupta, B., Anjum, N., Gulrez, S.K.H. and Singh, H. Development of Antimicrobial Polypropylene Sutures By Graft Copolymerization. II. Evaluation of Physical Properties, Drug Release, and Antimicrobial Activity, J. Appl. Polym. Sci., 2007: 103: 3534-3538.
Volenko, A.V., Germanovich, ChS., Gurova, O.P. and Shvets, R.A. Capromed is an Antibacterial Sutural Material, Med. Tekh., 1994: 2: 32-34.
Quinn, J., Maw, J., Ramotar, K., Wenckebach, G. and Wells, G. Octylcyanoacrylate Tissue Adhesive Versus Suture Wound Repair in a Contaminated Wound Model, Surgery, 1997: 122: 69-72.
Lendlein, A. and Langer, R. Biodegradable, Elastic Shape Memory Polymers for Potential Biomedical Applications, Science, 2002: 296: 1673-1676.
Bretcanu, O., Verné, E., Borello, L. and Boccaccini, A.R. Bioactivity of Degradable Polymer Sutures Coated with Bioactive Glass, J. Mater. Sci.: Mater. Med., 2004: 15: 893-899.
Neligan, P.C. Bioactive Sutures, Plast. Reconstr. Surg., 2006: 118: 1645-1647.
Pasternak, B., Rehn, M., Andersen, L. et al. Doxycycline-coated Sutures Improve Mechanical Strength of Intestinal Anastomoses, Int. J. Colorectal Dis., 2008: 23: 271-276.
Harnet, J.-C., Le Guen, E., Ball, V. et al. Antibacterial Protection of Suture Material by Chlorhexidine-functionalized Polyelectrolyte Multilayer Films, J. Mater. Sci.: Mater. Med., 2009: 20: 185-193.
Zhukovskii, V.A., Khokhlova, V.A. and Korovicheva, S.Yu. Surgical Suture Materials with Antimicrobial Properties, Fibre Chem., 2007; 39: 136-143.
Scott, D.J. and Goova, M.T. ( 2004). New and Evolving Laparoscopic Instrumentation, In: Soper, N.J., Swanstrom, L.L. and Eubanks, W.S. (eds), Mastery of Endoscopic and Laparoscopic Surgery, 2nd edn, Lippincott, Williams & Wilkins, pp. 24-33
Tremblay, S., El Maliki, A., Fiset, M. and Mantovani, D. Laparoscopic Surgical Manipulations Affect the Mechanical Properties and the Microstructure of Polymeric Sutures, Mater. Sci. Forum., 2007: 539-543: 161-166.
Kim, J.-C., Lee, Y.-K., Lim, B.-S., Rhee, S.-H. and Yang, H.-C. Comparison of Tensile and Knot Security Properties of Surgical Sutures, J. Mater. Sci.: Mater. Med., 2007: 18: 2363-2369.
Im, J.N., Kim, J.K., Kim, H.-K., Lee, K.Y. and Park, W.H. Effect of Tying Conditions on the Knot Security of Suture Materials, J. Appl. Polym. Sci., 2008: 109: 918-922.
Wright, P.B., Budoff, J.E., Yeh, M.L., Kelm, Z.S. and Luo, Z.-P. Strength of Damaged Suture: An In Vitro Study, Arthroscopy, 2006 : 22: 1270-1275.
Coats, B. and Margulies, S.S. Material Properties of Human Infant Skull and Suture at High Rates, J. Neurotrauma, 2006: 23: 1222-1232.
Yamagami, N., Mori, R., Yotsumoto, T., Hatanaka, H., Takao, M. and Uchio, Y. Biomechanical Differences Resulting from the Combination of Suture Materials and Repair Techniques, J. Orthopaed. Sci., 2006: 11: 614-619.
Wüst, D.M., Meyer, D.C., Favre, P. and Gerber, C. Properties of Braided Polyblend Polyethylene Sutures in Comparison to Braided Polyester and Monofilament Polydioxanone Sutures, Arthroscopy, 2006: 22: 1146-1153.
Zhukovskii, V.A., Voronova, I.G., Khokhlova, V.A., Gridneva, A.V. and Filipenko, T.S. Technological Developments in Making Polypropylene Surgical Monofilaments, Fibre Chem., 2008: 40: 322-329.
Chooprayoon, P., Siripitayananon, J., Molloy, R., Bunkird, S., Soywongsa, T. and Tariyawong, A. Processing, Mechanical Property Development and In Vitro Hydrolytic Degradation Studies of a Poly(L-lactide-co-ε-caprolactone) Monofilament Fibre for Potential Use as an Absorbable Surgical Suture, Adv. Mater. Res., 2008: 55-57: 693-696.
De Breuck, H. Monofilaments for Medical Applications, Unitex, 2009: 1: 13-15.
Baums, M.H., Buchhorn, G.H., Spahn, G., Poppendieck, B., Schultz, W. and Klinger, H.-M. Biomechanical Characteristics of Single-row Repair in Comparison to Double-row Repair with Consideration of the Suture Configuration and Suture Material, Knee Surg. Sports Traumatol. Arthrosc., 2008: 16: 1052-1060.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: October 22, 2010
Issue published: November 2010

Keywords

  1. polymeric sutures
  2. absorbable
  3. chemistry
  4. properties
  5. biodegradation.

Rights and permissions

© The Author(s), 2010.
Request permissions for this article.
PubMed: 20971780

Authors

Affiliations

Chennakkattu Krishna Sadasivan Pillai
Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695 012, India
Chandra P. Sharma
Division of Biosurface Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Poojappura, Thiruvananthapuram 695 012, India, [email protected]

Metrics and citations

Metrics

Journals metrics

This article was published in Journal of Biomaterials Applications.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 1847

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 211 view articles Opens in new tab

Crossref: 246

  1. Tuning the properties of surgical polymeric materials for improved sof...
    Go to citation Crossref Google Scholar
  2. Progress of Degradable Synthetic Polymers in Adipose Tissue Engineerin...
    Go to citation Crossref Google Scholar
  3. Micro and nano plastics release from a single absorbable suture into s...
    Go to citation Crossref Google Scholar
  4. Effect of Antihydrolysis Agents on the Structure and Properties of PBA...
    Go to citation Crossref Google Scholar
  5. Silk Fibroin Materials: Biomedical Applications and Perspectives
    Go to citation Crossref Google Scholar
  6. The effect of double W tension-reduced suture technique on the abdomin...
    Go to citation Crossref Google Scholar
  7. Development of new bioabsorbable implants with de novo adipogenesis
    Go to citation Crossref Google Scholar
  8. Polymeric Nanoparticles in Drug Delivery
    Go to citation Crossref Google Scholar
  9. Drug-Eluting Sutures by Hot-Melt Extrusion: Current Trends and Future ...
    Go to citation Crossref Google Scholar
  10. Microbial‐Enabled Photosynthetic Oxygenation for Disease Treatment
    Go to citation Crossref Google Scholar
  11. Effect of segmental motion on hydrolytic degradation of polyglycolide ...
    Go to citation Crossref Google Scholar
  12. Microbiological and Clinical Assessments of Suture Materials and Cyano...
    Go to citation Crossref Google Scholar
  13. Bioinspired, Robust, and Absorbable Cellulose Nanofibrils/Chitosan Fil...
    Go to citation Crossref Google Scholar
  14. Mechanical Properties, Morphological Characteristics and Microstructur...
    Go to citation Crossref Google Scholar
  15. Advances, challenges, and prospects for surgical suture materials
    Go to citation Crossref Google Scholar
  16. A Review of Biodegradable Plastics: Chemistry, Applications, Propertie...
    Go to citation Crossref Google Scholar
  17. Influence of Tubular Braid’s Structures on Wicking Behaviours: An Expe...
    Go to citation Crossref Google Scholar
  18. NOVEL METHOD TO ASSESS THE DYNAMIC TENSILE PROPERTIES OF SPORTS MEDICI...
    Go to citation Crossref Google Scholar
  19. Assessment of the Impact of Commonly used Beverages on Durability of S...
    Go to citation Crossref Google Scholar
  20. Suture materials
    Go to citation Crossref Google Scholar
  21. Surgical Wound Closure and Healing
    Go to citation Crossref Google Scholar
  22. Modifying Poly(caprolactone) Degradation through C–H Functionalization
    Go to citation Crossref Google Scholar
  23. Designing biomimetic scaffolds for skin tissue engineering
    Go to citation Crossref Google Scholar
  24. Comparing Static Stability of Native Elbow With Static Stability of No...
    Go to citation Crossref Google Scholar
  25. A novel approach to evaluate the mechanical responses of elastin-like ...
    Go to citation Crossref Google Scholar
  26. Knot strength and antimicrobial evaluations of partially absorbable su...
    Go to citation Crossref Google Scholar
  27. Testing of Novel Total Elbow Prostheses Using Active Motion Experiment...
    Go to citation Crossref Google Scholar
  28. Testing of a Novel Method for Securing Ligaments Against Bone During S...
    Go to citation Crossref Google Scholar
  29. Biodegradable Materials for Tissue Engineering: Development, Classific...
    Go to citation Crossref Google Scholar
  30. Biodegradable Block Poly(ester amine)s with Pendant Hydroxyl Groups fo...
    Go to citation Crossref Google Scholar
  31. The Effect of Topical Agents on the Tensile Strength of Absorbable and...
    Go to citation Crossref Google Scholar
  32. Recycling of Bioplastics
    Go to citation Crossref Google Scholar
  33. Shape memory polymers as sutures
    Go to citation Crossref Google Scholar
  34. Improving the therapeutic value of sutures
    Go to citation Crossref Google Scholar
  35. Polymers for surgical sutures
    Go to citation Crossref Google Scholar
  36. Polycaprolactone-based nanoparticles for advanced therapeutic applicat...
    Go to citation Crossref Google Scholar
  37. THE USE OF SURGICAL THREADS IN KIDNEY SURGERY
    Go to citation Crossref Google Scholar
  38. Nanoformulations for cardiovascular therapy
    Go to citation Crossref Google Scholar
  39. 3D bioprinting of an implantable xeno‐free vascularized ...
    Go to citation Crossref Google Scholar
  40. Nanofiber Aerogels with Precision Macrochannels and LL‐37‐Mimic Peptid...
    Go to citation Crossref Google Scholar
  41. Tissue-Engineering Bladder Augmentation
    Go to citation Crossref Google Scholar
  42. Lignin nanoparticle–based nanocomposite hydrogels for biomedical appli...
    Go to citation Crossref Google Scholar
  43. Feasibility and safety of inserting transient biodegradable stents in ...
    Go to citation Crossref Google Scholar
  44. Tissue engineering of the gastrointestinal tract: the historic path to...
    Go to citation Crossref Google Scholar
  45. A multidisciplinary perspective on the latest trends in artificial car...
    Go to citation Crossref Google Scholar
  46. Nanocomposites
    Go to citation Crossref Google Scholar
  47. A review of current advancements for wound healing: Biomaterial applic...
    Go to citation Crossref Google Scholar
  48. Hybrid suture coating for dual-staged control over antibacterial actio...
    Go to citation Crossref Google Scholar
  49. Structure, properties, and in vitro degradation behavior of biodegrada...
    Go to citation Crossref Google Scholar
  50. Effects of Introduction of L-Lactide on Microstructures, Thermal Prope...
    Go to citation Crossref Google Scholar
  51. Emerging polymeric biomaterials and manufacturing techniques in regene...
    Go to citation Crossref Google Scholar
  52. Mesh fixation techniques in Lichtenstein tension‐free repair: a networ...
    Go to citation Crossref Google Scholar
  53. Antibacterial Sutures Coated with Smooth Chitosan Layer by Gradient De...
    Go to citation Crossref Google Scholar
  54. Polylactide Perspectives in Biomedicine: From Novel Synthesis to the A...
    Go to citation Crossref Google Scholar
  55. Impact of Fluoridated Mouthwashes on Strength and Durability of Three ...
    Go to citation Crossref Google Scholar
  56. Antibacterial and antioxidant phenolic compounds loaded ...
    Go to citation Crossref Google Scholar
  57. Progress in Degradation Behavior of Most Common Types of Functionalize...
    Go to citation Crossref Google Scholar
  58. New manufacturing process to develop antibacterial dyed polyethylene t...
    Go to citation Crossref Google Scholar
  59. Nano‐bio‐engineered silk matrix based devices for molecular bioanalysi...
    Go to citation Crossref Google Scholar
  60. Evaluation of Bacterial Colonization and Clinical Properties of Differ...
    Go to citation Crossref Google Scholar
  61. Polysaccharides-Based Biomaterials for Surgical Applications
    Go to citation Crossref Google Scholar
  62. Tissue-Engineering Bladder Augmentation
    Go to citation Crossref Google Scholar
  63. Antibacterial and Nanostructured Sutures for Enhanced Healing and Tiss...
    Go to citation Crossref Google Scholar
  64. Plastics in Biomedical Application
    Go to citation Crossref Google Scholar
  65. Advances in the Development of Biodegradable Polymeric Materials for B...
    Go to citation Crossref Google Scholar
  66. Recent Advancement in Biomedical Applications of Polycaprolactone and ...
    Go to citation Crossref Google Scholar
  67. Bladder tissue regeneration
    Go to citation Crossref Google Scholar
  68. Biodegradable Albumin - Based Composites for Suture Development in Tis...
    Go to citation Crossref Google Scholar
  69. Evaluation of mechanical properties of three commonly used suture mate...
    Go to citation Crossref Google Scholar
  70. A new approach for the production of multifilament suture - ...
    Go to citation Crossref Google Scholar
  71. Bacterial Abundance, Diversity and Activity During Long-Term Colonizat...
    Go to citation Crossref Google Scholar
  72. Development of an Antimicrobial-Coated Absorbable Monofilament Suture ...
    Go to citation Crossref Google Scholar
  73. Biocompatibility Analyses of HF-Passivated Magnesium Screws for Guided...
    Go to citation Crossref Google Scholar
  74. Covalently Loaded Naloxone Nanoparticles as a Long-Acting Medical Coun...
    Go to citation Crossref Google Scholar
  75. A review on emerging biodegradable polymers for environmentally benign...
    Go to citation Crossref Google Scholar
  76. Vascular Network Formation on Macroporous Polydioxanone Scaffolds
    Go to citation Crossref Google Scholar
  77. Engineering and polymeric composition of drug‐eluting suture: A review
    Go to citation Crossref Google Scholar
  78. In Vivo Versus In Vitro Degradation of a 3D Printed Resorbable Device ...
    Go to citation Crossref Google Scholar
  79. Design and fabrication of drug‐delivery systems toward adjustable rele...
    Go to citation Crossref Google Scholar
  80. Raman Spectroscopy as a Novel Method for the Characterization of Polyd...
    Go to citation Crossref Google Scholar
  81. Principles for Controlling the Shape Recovery and Degradation Behavior...
    Go to citation Crossref Google Scholar
  82. Resorbable self‐locking device for canine lung lobectomy: A clinical a...
    Go to citation Crossref Google Scholar
  83. Current Applications and Future Directions of Bioengineering Approache...
    Go to citation Crossref Google Scholar
  84. Sustainable Antibacterial Surgical Suture Using a Facile Scalable Silk...
    Go to citation Crossref Google Scholar
  85. Advances in carbohydrate-based polymers for the design of suture mater...
    Go to citation Crossref Google Scholar
  86. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose N...
    Go to citation Crossref Google Scholar
  87. Ultra‐thin, high strength, antibiotic‐eluting sutures for prevention o...
    Go to citation Crossref Google Scholar
  88. A Comparative Evaluation of Human Gingival Tissue Response to Silk & M...
    Go to citation Crossref Google Scholar
  89. Silkworm and spider silk electrospinning: a review
    Go to citation Crossref Google Scholar
  90. An Accelerated Wound‐Healing Surgical Suture Engineered with an Extrac...
    Go to citation Crossref Google Scholar
  91. Leveraging advances in chemistry to design biodegradable polymeric imp...
    Go to citation Crossref Google Scholar
  92. Polycaprolactone: a biodegradable polymer with its application in the ...
    Go to citation Crossref Google Scholar
  93. 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sust...
    Go to citation Crossref Google Scholar
  94. Relative Influence of Plastic Debris Size and Shape, Chemical Composit...
    Go to citation Crossref Google Scholar
  95. Evaluation of canine adipose–derived multipotent stromal cell differen...
    Go to citation Crossref Google Scholar
  96. Catalysis in polymerization of cyclic esters. Catalyst and initiator i...
    Go to citation Crossref Google Scholar
  97. Natural Cellulose Fibers for Surgical Suture Applications
    Go to citation Crossref Google Scholar
  98. Modification of relevant polymeric materials for medical applications ...
    Go to citation Crossref Google Scholar
  99. Recycling of Bioplastics: Routes and Benefits
    Go to citation Crossref Google Scholar
  100. Thermodynamic mechanism of stability and polymorphic transformation be...
    Go to citation Crossref Google Scholar
  101. Melt-Spun Fibers for Textile Applications
    Go to citation Crossref Google Scholar
  102. Fascial Closure
    Go to citation Crossref Google Scholar
  103. A review on synthesis and biomedical applications of polyglycolic acid
    Go to citation Crossref Google Scholar
  104. Bioactive Polylactide Fibrous Materials Prepared by Crazing Mechanism
    Go to citation Crossref Google Scholar
  105. Development of a spray-type adhesion barrier
    Go to citation Crossref Google Scholar
  106. Optimized Design and Development of a Bioresorbable High Rotational St...
    Go to citation Crossref Google Scholar
  107. Tensile properties of synthetic, absorbable monofilament suture materi...
    Go to citation Crossref Google Scholar
  108. Influence of Hybridization on Tensile Behaviors of Non-Absorbable Brai...
    Go to citation Crossref Google Scholar
  109. The effect of sorbitan monooleate as surfactant in preparation of poly...
    Go to citation Crossref Google Scholar
  110. Doğal Antimikrobiyal Maddelerin Cerrahi Sütürlerin Özelliklerine Etkis...
    Go to citation Crossref Google Scholar
  111. Fibrin hydrogels are safe, degradable scaffolds for sub-retinal implan...
    Go to citation Crossref Google Scholar
  112. Fabrication of Stimuli-Responsive Polymers and their Composites: Candi...
    Go to citation Crossref Google Scholar
  113. Bioresorbable Polymers for Surgical Suture Applications
    Go to citation Crossref Google Scholar
  114. Polymeric Nanoparticles
    Go to citation Crossref Google Scholar
  115. Biodegradable polymers
    Go to citation Crossref Google Scholar
  116. In-vitro evaluation of commonly used beverages on tensile strength of ...
    Go to citation Crossref Google Scholar
  117. Short-term Treatment Outcomes of Facial Rejuvenation Using the Mint Li...
    Go to citation Crossref Google Scholar
  118. Biomechanical Properties and Biocompatibility of a Non-Absorbable Elas...
    Go to citation Crossref Google Scholar
  119. Effect of Polymer Demixed Nanotopographies on Bacterial Adhesion and B...
    Go to citation Crossref Google Scholar
  120. The potential of oxalic – and glycolic acid based polyesters (review)....
    Go to citation Crossref Google Scholar
  121. Biodegradable atrial septal defect occluders: A current review
    Go to citation Crossref Google Scholar
  122. Recent developments and clinical applications of surgical glues: An ov...
    Go to citation Crossref Google Scholar
  123. Manufacturing and physical characterization of absorbable oxidized reg...
    Go to citation Crossref Google Scholar
  124. Influence of thermal annealing on mechanical properties and ...
    Go to citation Crossref Google Scholar
  125. Degradation of Polymer Films on Surfaces: A Model Study with Poly(seba...
    Go to citation Crossref Google Scholar
  126. Flexibility Enhancement of Poly(lactide-co-glycolide) for Fused Deposi...
    Go to citation Crossref Google Scholar
  127. Polymeric Biomaterials for Scaffold-Based Bone Regenerative Engineerin...
    Go to citation Crossref Google Scholar
  128. N-Acetyl-D-Glucosamine-Loaded Chitosan Filaments Biodegradable and Bio...
    Go to citation Crossref Google Scholar
  129. Pyridine as an additive to improve the deposition of continuous electr...
    Go to citation Crossref Google Scholar
  130. Preparation, Mechanical Properties, and Biocompatibility of Graphene O...
    Go to citation Crossref Google Scholar
  131. Comparison of macroscopic resorption time for a self‐locking device an...
    Go to citation Crossref Google Scholar
  132. Recent concepts in biodegradable polymers for tissue engineering parad...
    Go to citation Crossref Google Scholar
  133. Functionalized Silk for Surgical Suture Applications
    Go to citation Crossref Google Scholar
  134. Whole-heart scaffolds—how to build a heart
    Go to citation Crossref Google Scholar
  135. Mechanical properties of medical textiles
    Go to citation Crossref Google Scholar
  136. Fiber Formation from Silk Fibroin Using Pressurized Gyration
    Go to citation Crossref Google Scholar
  137. A comparative study on in vitro degradation behavior of PLLA-based cop...
    Go to citation Crossref Google Scholar
  138. Development of photosynthetic sutures for the local delivery of oxygen...
    Go to citation Crossref Google Scholar
  139. Prevention of bacterial colonization on non-thermal atmospheric plasma...
    Go to citation Crossref Google Scholar
  140. Resorbable Implants for Orbital Fractures
    Go to citation Crossref Google Scholar
  141. Surface-modified halloysite nanotubes reinforced poly(lactic acid) for...
    Go to citation Crossref Google Scholar
  142. A Methodologic Approach for the Selection of Bio-Resorbable Polymers i...
    Go to citation Crossref Google Scholar
  143. Efficient synthetic approach to copolymers of glycolic and lactic acid...
    Go to citation Crossref Google Scholar
  144. Bioengineering Approaches for Bladder Regeneration
    Go to citation Crossref Google Scholar
  145. PLGA with less than 1 month of half-life time: Tensile properties in d...
    Go to citation Crossref Google Scholar
  146. A Randomized Controlled Trial of Running Versus Interrupted Subcuticul...
    Go to citation Crossref Google Scholar
  147. Resorbable Self-Locking Implant for Lung Lobectomy Through Video-Assis...
    Go to citation Crossref Google ScholarPub Med
  148. Reactive Inkjet Printing of Regenerated Silk Fibroin Films for Use as ...
    Go to citation Crossref Google Scholar
  149. Viable adhered Staphylococcus aureus highly reduced on novel antimicro...
    Go to citation Crossref Google Scholar
  150. Novel Poly(l-lactide)/graphene oxide films with improved mechanical fl...
    Go to citation Crossref Google Scholar
  151. Polymeric Medical Sutures: An Exploration of Polymers and Green Chemis...
    Go to citation Crossref Google Scholar
  152. Current manufacturing processes of drug-eluting sutures
    Go to citation Crossref Google Scholar
  153. Functional Polysaccharide Sutures Prepared by Wet Fusion of Interfacia...
    Go to citation Crossref Google Scholar
  154. Synthetic sutures: Clinical evaluation and future developments
    Go to citation Crossref Google ScholarPub Med
  155. Preparation of Phytic Acid/Silane Hybrid Coating on Magnesium Alloy an...
    Go to citation Crossref Google Scholar
  156. Ultrasound and Microwave Aided Natural Dyeing of Nettle Biofibre (Urti...
    Go to citation Crossref Google Scholar
  157. Application of materials as medical devices with localized drug delive...
    Go to citation Crossref Google Scholar
  158. Functional Polycarbonate of a d -Glucal-De...
    Go to citation Crossref Google Scholar
  159. A comparison of the heat treatment duration and the multilayered effec...
    Go to citation Crossref Google Scholar
  160. Polymer sutures for simultaneous wound healing and drug delivery – A r...
    Go to citation Crossref Google Scholar
  161. Ring-opening polymerization of glycolide and rac -lactide, catalyzed b...
    Go to citation Crossref Google Scholar
  162. Electrospinning of silk fibroin from all aqueous solution at low conce...
    Go to citation Crossref Google Scholar
  163. Accelerated biodegradation of silk sutures through matrix metalloprote...
    Go to citation Crossref Google Scholar
  164. Additive manufacturing of polymer melts for implantable medical device...
    Go to citation Crossref Google Scholar
  165. Biomimetic Orthopedic Materials
    Go to citation Crossref Google Scholar
  166. Controlling chitosan degradation properties in vitro and in vivo
    Go to citation Crossref Google Scholar
  167. Electrospun biomaterials for dermal regeneration
    Go to citation Crossref Google Scholar
  168. Synthetic Biomaterial for Regenerative Medicine Applications
    Go to citation Crossref Google Scholar
  169. Design, synthesis and ring-opening polymerization of a new iodinated c...
    Go to citation Crossref Google Scholar
  170. A novel suture retention test for scaffold strength characterization i...
    Go to citation Crossref Google Scholar
  171. Radiation Grafting for the Functionalization and Development of Smart ...
    Go to citation Crossref Google Scholar
  172. Vaginal Cuff Closure in Robotic Hysterectomy: A Randomized Controlled ...
    Go to citation Crossref Google Scholar
  173. Advances in electrospinning: The production and application of nanofib...
    Go to citation Crossref Google Scholar
  174. Review of Multifarious Applications of Poly (Lactic Acid)
    Go to citation Crossref Google Scholar
  175. İpek Ameliyat İplikleri ve Türkiye’de Üretim Olanakları
    Go to citation Crossref Google Scholar
  176. Suture materials — Current and emerging trends
    Go to citation Crossref Google Scholar
  177. Impact of hot-stretching treatment on physical and mechanical properti...
    Go to citation Crossref Google Scholar
  178. Simultaneous optimization of mechanical properties of braided polyethy...
    Go to citation Crossref Google Scholar
  179. Comparison and preparation of multilayered polylactic acid fabric stre...
    Go to citation Crossref Google Scholar
  180. Modification of polyglycolic acid and poly lactic-co-glycolic acid fib...
    Go to citation Crossref Google Scholar
  181. Biodegradable Polymeric Materials
    Go to citation Crossref Google Scholar
  182. Istihlak in the Application of Catgut Surgical Sutures in Malaysia
    Go to citation Crossref Google Scholar
  183. Fabrication and feasibility study of an absorbable diacetyl chitin sur...
    Go to citation Crossref Google Scholar
  184. Spherulitic morphologies of the triblock Poly(GL)-b-poly(GL-co-TMC-co-...
    Go to citation Crossref Google Scholar
  185. Progress in material design for biomedical applications
    Go to citation Crossref Google Scholar
  186. Advanced Therapeutic Dressings for Effective Wound Healing—A Review
    Go to citation Crossref Google Scholar
  187. Shape Memory Systems with Biodegradable Polyesters
    Go to citation Crossref Google Scholar
  188. Mechanical properties of suture materials in general and cutaneous sur...
    Go to citation Crossref Google Scholar
  189. Well-defined biohybrids using reversible-deactivation radical polymeri...
    Go to citation Crossref Google Scholar
  190. Tribological Study of PCL-PEG-PCL Polymer on SiNxHy Base
    Go to citation Crossref Google Scholar
  191. THE DURABILITY AND TRAUMATIC PROPERTIES OF SURGICAL POLYAMIDE SUTURES ...
    Go to citation Crossref Google Scholar
  192. Polymers in Cardiology
    Go to citation Crossref Google Scholar
  193. Three-dimensional fabrics as medical textiles
    Go to citation Crossref Google Scholar
  194. Silk as a suture material
    Go to citation Crossref Google Scholar
  195. Polymorphism of a polymer precursor: metastable glycolide polymorph re...
    Go to citation Crossref Google Scholar
  196. Biocompatible succinic acid-based polyesters for potential biomedical ...
    Go to citation Crossref Google Scholar
  197. Polymers for Cardiovascular Stent Coatings
    Go to citation Crossref Google Scholar
  198. Suture materials affect peri-implant bone healing and implant osseoint...
    Go to citation Crossref Google Scholar
  199. Synthesis of new bis(3-perfluoroalkyl-1 H -pyrazole) polyoxyethylene
    Go to citation Crossref Google Scholar
  200. A new technique for stabilization of injuries at C2–C3 in young childr...
    Go to citation Crossref Google Scholar
  201. A resorbable bicomponent braided ureteral stent with improved mechanic...
    Go to citation Crossref Google Scholar
  202. Melt-spun bioactive sutures containing nanohybrids for local delivery ...
    Go to citation Crossref Google Scholar
  203. Poly (∊-caprolactone) Fiber: An Overview
    Go to citation Crossref Google Scholar
  204. The Influence of IL-10 and TNFα on Chondrogenesis of Human Mesenchymal...
    Go to citation Crossref Google Scholar
  205. Reduced Postoperative Pain after Inguinal Hernia Repair with Absorbabl...
    Go to citation Crossref Google Scholar
  206. Potassium Dichromate Surface Modification of Poly-Lactic Acid (PLA) an...
    Go to citation Crossref Google Scholar
  207. Recent advances in biodegradable polymeric materials
    Go to citation Crossref Google Scholar
  208. Is bismuth subsalicylate an effective nontoxic catalyst for plga synth...
    Go to citation Crossref Google Scholar
  209. Tensile, Knot, and Detaching from Needle Performances of Atraumatic Su...
    Go to citation Crossref Google Scholar
  210. Poly (lactide -co- glycolide) Fiber: An Overview
    Go to citation Crossref Google Scholar
  211. Pathophysiological and Pharmacological Rationale for the Use of Exenat...
    Go to citation Crossref Google Scholar
  212. Evaluation of PHBHHx and PHBV/PLA fibers used as medical sutures
    Go to citation Crossref Google Scholar
  213. Hydrolytically Sensitive Fiber-Forming Bioresorbable Polymers
    Go to citation Crossref Google Scholar
  214. Mechanical properties and in vitro degradation of PLGA suture manufact...
    Go to citation Crossref Google Scholar
  215. Progress in Functionalized Biodegradable Polyesters
    Go to citation Crossref Google Scholar
  216. Biodegradable Polymers
    Go to citation Crossref Google Scholar
  217. Biodegradable Polymers
    Go to citation Crossref Google Scholar
  218. Reduced Postoperative Chronic Pain after Tension-Free Inguinal Hernia ...
    Go to citation Crossref Google Scholar
  219. Gold nanoparticle conjugated PLGA–PEG–SA–PEG–PLGA multiblock copolymer...
    Go to citation Crossref Google Scholar
  220. Ligation of the spermatic cord in dogs with a self-locking device of a...
    Go to citation Crossref Google Scholar
  221. Comparison of the growth and degradation of poly(glycolic acid) and po...
    Go to citation Crossref Google Scholar
  222. Poly( L ‐lactide‐ co ...
    Go to citation Crossref Google Scholar
  223. Surgical suture assembled with polymeric drug-delivery sheet for susta...
    Go to citation Crossref Google Scholar
  224. Recent Advances in the Production, Recovery and Applications of Polyhy...
    Go to citation Crossref Google Scholar
  225. Organ engineering – combining stem cells, biomaterials, and bioreactor...
    Go to citation Crossref Google Scholar
  226. Effect of chitosan coating on the characteristics of silk-braided sutu...
    Go to citation Crossref Google Scholar
  227. Effect of polyacrylic acid (PAA) adsorption on stability of mixed alum...
    Go to citation Crossref Google Scholar
  228. Effect of solution pH on the stability of mixed silica -alumina suspen...
    Go to citation Crossref Google Scholar
  229. Evaluation of tensile strength of surgical synthetic absorbable suture...
    Go to citation Crossref Google Scholar
  230. Biodegradable Materials
    Go to citation Crossref Google Scholar
  231. Effect of the type of polymer functional groups on the structure of it...
    Go to citation Crossref Google Scholar
  232. Tensile mechanics of braided sutures
    Go to citation Crossref Google Scholar
  233. Perilimbal pocket technique for surgical repositioning of prolapsed ni...
    Go to citation Crossref Google Scholar
  234. Acrylonitrile-Based Nitric Oxide Releasing Melt-Spun Fibers for Enhanc...
    Go to citation Crossref Google Scholar
  235. Fabrication and characterization of silk braided sutures
    Go to citation Crossref Google Scholar
  236. Growth Factors, Stem Cells, Scaffolds and Biomaterials for Tendon Rege...
    Go to citation Crossref Google Scholar
  237. Internal Stabilization of a Flexion-Distraction Injury of the Upper Ce...
    Go to citation Crossref Google Scholar
  238. A review of the composition, characteristics, and effectiveness of bar...
    Go to citation Crossref Google Scholar
  239. Treatment of Epiphora in Patients with Conjunctivochalasis Using Conju...
    Go to citation Crossref Google Scholar
  240. Biodegradable stent
    Go to citation Crossref Google Scholar
  241. Mechanical characterization and biocompatibility of a novel reinforced...
    Go to citation Crossref Google Scholar
  242. Biodegradable Polymers- A Review on Recent Trends and Emerging Perspec...
    Go to citation Crossref Google Scholar
  243. Protein Polymer Conjugates: Improving the Stability of Hemoglobin with...
    Go to citation Crossref Google Scholar
  244. Tissue Engineering von Gefäßprothesen
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:

IOM3 members can access this journal content using society membership credentials.

IOM3 members can access this journal content using society membership credentials.


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub