Abstract
Multi-state approaches are becoming increasingly popular to analyse the complex evolution of patients with chronic diseases. For example, the evolution of kidney transplant recipients can be broken down into several clinical states. With this application in mind, we present a flexible semi-Markov model. The distribution functions are fitted to the durations in states and the relevance of the generalised Weibull distribution is shown. The corresponding likelihood function allows for interval censoring, i.e. the times of transitions and the sequences of states are not available during the elapsed times between two visits. The explanatory variables are introduced through the Markov chain and through the probability density functions of durations. A goodness-of-fit test is also defined to examine the stationarity of the semi-Markov model.
|
Lagakos S. , Sommer C. , Zelen M. Semi-Markov models for partially censored data. Biometrika 1978; 65: 311-17. Google Scholar | Crossref | ISI | |
|
Kay R. A Markov model for analyzing cancer markers and disease states in survival studies. Biometrics 1986; 7: 855-66. Google Scholar | Crossref | ISI | |
|
Andersen P. Multistate models in survival analysis: a study of nephropathy and mortality in diabetes. Statistics in Medicine 1988; 7: 661-70. Google Scholar | Crossref | Medline | ISI | |
|
Perez-Ocon R. , Ruiz-Castro J. Semi-Markov models and applications. Dordrecht, Netherlands: Kluwer Academic Publishers , 1999. Google Scholar | |
|
Dabrowska D. , Sun G. , Horowitz M. Cox Regression in a Markov Renewal Model : an application to the analysis of bone transplant data. Journal of the American Statistical Association 1994; 89: 867-77. Google Scholar | Crossref | ISI | |
|
Sternberg M. , Satten G. Discrete time nonparametric estimation for chain of events data subject to interval censoring and truncation. Biometrics 1999; 55: 514-22. Google Scholar | Crossref | Medline | ISI | |
|
Lindsey J. A study of interval censoring in parametric regression models. Lifetime Data Analysis 1998; 4: 329-54. Google Scholar | Crossref | Medline | ISI | |
|
Foucher Y. , Giral M. , Soulillou J. , Daures J. A semi-Markov model for multistate and interval-censored data with multiple terminal events. Application in renal transplantation. Statistics in Medicine 2007; 26: 5381-93. Google Scholar | Crossref | Medline | ISI | |
|
Kang M. , Lagakos S. Statistical methods for panel data from a semi-Markov process, with application to HPV. Biostatistics 2007; 8: 252-64. Google Scholar | Crossref | Medline | ISI | |
|
Escolano S. , Golmard J. , Korinek A. , Mallet A. A multi-state model for evolution of intensive care unit patiets: prediction of nosocomial infections and deaths. Statistics in Medicine 2000; 19: 3465-82. Google Scholar | Crossref | Medline | ISI | |
|
Huang Y. Censored regression with the multistate accelerated sojourn times model. Journals of the Royal Statistical Society B 2002; 64: 17-29. Google Scholar | Crossref | ISI | |
|
Foucher Y. , Mathieu E. , Saint-Pierre P. , Durand J. , Daures J. A Semi-Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biometrical Journal 2005; 47: 825-33. Google Scholar | Crossref | Medline | ISI | |
|
Kalbfleisch J. , Lawless J. The analysis of panel data under a Markov assumption. Journal of the American Statistical Association 1985; 80: 863-71. Google Scholar | Crossref | ISI | |
|
Castelli C. , Combescure C. , Foucher Y. , Daures J. Cost-effectiveness analysis in colorectal cancer using a semi-Markov model. Statistics in Medicine 2007; 26: 5557-71. Google Scholar | Crossref | Medline | ISI | |
|
Aguirre-Hernandez R. , Farewell V. A Pearson-type goodness-of-fit test for stationary and time-continuous Markov regression models. Statistics in Medicine 2002; 21: 1899-911. Google Scholar | Crossref | Medline | ISI | |
|
Titman A. , Sharples L. A general goodness-of-fit test for Markov and hidden Markov models. Statistics in Medicine 2007; DOI:10.1002/sim.3033. Google Scholar | ISI | |
|
Giral M. , Bertola J. , Foucher Y. , Villers D. , Bironneau E. , Blanloeil Y. , et al. Effect of brain-dead donor resuscitation on delayed graft function: results of a monocentric analysis. Transplantation 2007; 83: 1174-81. Google Scholar | Crossref | Medline | ISI | |
|
Levey A. , Bosch J. , Lewis J. , Greene T. , Rogers N. , Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group . Annals of Internal Medicine 1999; 130: 461-70. Google Scholar | Crossref | Medline | ISI | |
|
Foucher Y. Modèles semi-markoviens: Application à l’analyse de l’évolution de pathologies chroniques (PhdThesis). Université Montpellier 1. http://tel.archivesouvertes.fr/tel-00267683/fr/; 2007. Google Scholar | |
|
Bagdonavicius V. , Nikulin M. Accelerated life models. Chapman and Hall/CRC, London ; 2002. Google Scholar | |
|
Orbe J. , Ferreira E. , Nunez-Anton V. Comparing proportional hazards and accelerated failure time models for survival analysis. Statistics in medicine 2002; 21: 3493-3510. Google Scholar | Crossref | Medline | ISI | |
|
Stablein D. , Carter W. , Novak J. Analysis of survival data with nonproportional hazard functions. Controlled Clinical Trials 1981; 2: 149-159. Google Scholar | Crossref | Medline | |
|
McCullagh P. Generalized linear models. Chapman and Hall, London; 1983. Google Scholar | Crossref | |
|
Lawless J. Statistical models and methods for lifetime data. Wiley , New York; 1982. Google Scholar | |
|
Perez-Ocon R. , Ruiz-Castro J. , Gamiz-Perez M. A piecewise Markov process for analysing survival from breast cancer in different risk groups. Statistics in Medicine 2001; 20: 109-22. Google Scholar | Crossref | Medline | ISI |
