A bivariate copula mixed model has been recently proposed to synthesize diagnostic test accuracy studies and it has been shown that it is superior to the standard generalized linear mixed model in this context. Here, we call trivariate vine copulas to extend the bivariate meta-analysis of diagnostic test accuracy studies by accounting for disease prevalence. Our vine copula mixed model includes the trivariate generalized linear mixed model as a special case and can also operate on the original scale of sensitivity, specificity, and disease prevalence. Our general methodology is illustrated by re-analyzing the data of two published meta-analyses. Our study suggests that there can be an improvement on trivariate generalized linear mixed model in fit to data and makes the argument for moving to vine copula random effects models especially because of their richness, including reflection asymmetric tail dependence, and computational feasibility despite their three dimensionality.

1. Jackson, D, Riley, R, White, IR. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 24812498.
Google Scholar | Crossref | Medline | ISI
2. Mavridis, D, Salanti, G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res 2013; 22: 133158.
Google Scholar | SAGE Journals | ISI
3. Ma, X, Nie, L, Cole, SR Statistical methods for multivariate meta-analysis of diagnostic tests: an overview and tutorial. Stat Methods Med Res. (in press). DOI: 10.1177/0962280213492588.
Google Scholar | ISI
4. Chu, H, Nie, L, Chen, Y Bivariate random effects models for meta-analysis of comparative studies with binary outcomes: methods for the absolute risk difference and relative risk. Stat Methods Med Res 2012; 21: 621633.
Google Scholar | SAGE Journals | ISI
5. Chu, H, Cole, SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006; 59: 13311332.
Google Scholar | Medline | ISI
6. Arends, LR, Hamza, TH, van Houwelingen, JC Bivariate random effects meta-analysis of ROC curves. Med Decis Making 2008; 28: 621638.
Google Scholar | SAGE Journals | ISI
7. Hamza, TH, Arends, LR, van Houwelingen, HC Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds. BMC Med Res Methodol 2009; 9: 115.
Google Scholar | Medline | ISI
8. Chu, H, Nie, L, Cole, SR Meta-analysis of diagnostic accuracy studies accounting for disease prevalence: alternative parameterizations and model selection. Stat Med 2009; 28: 23842399.
Google Scholar | Medline | ISI
9. Brenner, H, Gefeller, O. Variation of sensitivity, specificity, likelihood ratios and predictive values with disease prevalence. Stat Med 1997; 16: 981991.
Google Scholar | Medline | ISI
10. Leeflang, MMG, Bossuyt, PMM, Irwig, L. Diagnostic test accuracy may vary with prevalence: implications for evidence-based diagnosis. J Clin Epidemiol 2009; 62: 512.
Google Scholar | Medline | ISI
11. Leeflang, MMG, Rutjes, AWS, Reitsma, JB Variation of a test’s sensitivity and specificity with disease prevalence. CMAJ 2013; 185: E537E544.
Google Scholar | Medline | ISI
12. Nikoloulopoulos, AK . A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Stat Med. 2015; 34: 38423865.
Google Scholar | Medline | ISI
13. Joe, H . Multivariate models and dependence concepts, London: Chapman & Hall, 1997.
Google Scholar
14. McNeil, AJ, Nešlehová, J. Multivariate Archimedean copulas, D-monotone functions and l1-norm symmetric distributions. Ann Stat 2009; 37: 30593097.
Google Scholar | ISI
15. Nikoloulopoulos, AK, Joe, H, Chaganty, NR. Weighted scores method for regression models with dependent data. Biostatistics 2011; 12: 653665.
Google Scholar | Medline | ISI
16. Joe, H, Li, H, Nikoloulopoulos, AK. Tail dependence functions and vine copulas. J Multivar Anal 2010; 101: 252270.
Google Scholar | ISI
17. Kurowicka, D, Joe, H. Dependence modeling – handbook on vine copulae, Singapore: World Scientific Publishing Co, 2011.
Google Scholar
18. Joe, H . Dependence modeling with copulas, London: Chapman & Hall, 2014.
Google Scholar
19. Hoyer, A, Kuss, O. Meta-analysis of diagnostic tests accounting for disease prevalence: a new model using trivariate copulas. Stat Med 2015; 34: 19121924.
Google Scholar | Medline | ISI
20. Kuss, O, Hoyer, A, Solms, A. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas. Stat Med 2014; 33: 1730.
Google Scholar | Medline | ISI
21. Demidenko, E . Mixed models: theory and applications, Hoboken, NJ: John Wiley & Sons, 2004.
Google Scholar
22. Nelsen, RB . An introduction to copulas, New York: Springer-Verlag, 2006.
Google Scholar
23. Sklar M. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 1959; 8: 229–231.
Google Scholar
24. Nikoloulopoulos, AK, Joe, H. Factor copula models for item response data. Psychometrika 2015; 80: 126150.
Google Scholar | Medline | ISI
25. Nikoloulopoulos, AK, Joe, H, Li, H. Vine copulas with asymmetric tail dependence and applications to financial return data. Comput Stat Data Anal 2012; 56: 6593673.
Google Scholar | ISI
26. Joe, H Families of m-variate distributions with given margins and m(m–1)/2 bivariate dependence parameters. In: Rüschendorf, L, Schweizer, B, Taylor, MD (eds). Distributions with fixed marginals and related topics, Hayward, CA: Institute of Mathematical Statistics, 1996, pp. 120141.
Google Scholar
27. Aas, K, Czado, C, Frigessi, A Pair-copula constructions of multiple dependence. Insur Math Econ 2009; 44: 182198.
Google Scholar | ISI
28. Nikoloulopoulos, AK . On the estimation of normal copula discrete regression models using the continuous extension and simulated likelihood. J Stat Plan Inference 2013; 143: 19231937.
Google Scholar | ISI
29. Nikoloulopoulos, AK . Efficient estimation of high-dimensional multivariate normal copula models with discrete spatial responses. Stoch Environ Res Risk Assess 2016; 30: 493505.
Google Scholar | ISI
30. Panagiotelis, A, Czado, C, Joe, H. Pair copula constructions for multivariate discrete data. J Am Stat Assoc 2012; 107: 10631072.
Google Scholar | ISI
31. Nash, JC . Compact numerical methods for computers: linear algebra and function minimisation, 2nd ed. New York: Hilger, 1990.
Google Scholar
32. Serfling, RJ . Approximation theorems of mathematical statistics, New York: Wiley, 1980.
Google Scholar
33. Stroud, AH, Secrest, D. Gaussian quadrature formulas, Englewood Cliffs, NJ: Prentice-Hall, 1966.
Google Scholar
34. Joe, H Dependence comparisons of vine copulae with four or more variables. In: Kurowicka, D, Joe, H (eds). Dependence modeling: handbook on vine copulae, Singapore: World Scientific, 2011, pp. 139164.
Google Scholar
35. Hua, L, Joe, H. Tail order and intermediate tail dependence of multivariate copulas. J Multivar Anal 2011; 102: 14541471.
Google Scholar | ISI
36. Nikoloulopoulos, AK, Karlis, D. Copula model evaluation based on parametric bootstrap. Computat Stat Data Anal 2008; 52: 33423353.
Google Scholar | ISI
37. Paul, M, Riebler, A, Bachmann, LM Bayesian bivariate meta-analysis of diagnostic test studies using integrated nested Laplace approximations. Stat Med 2010; 29: 13251339.
Google Scholar | Medline | ISI
38. Hult, H, Lindskog, F. Multivariate extremes, aggregation and dependence in elliptical distributions. Adv Appl Probab 2002; 34: 587608.
Google Scholar | ISI
39. Genest, C . Frank’s family of bivariate distributions. Biometrika 1987; 74: 549555.
Google Scholar | ISI
40. Genest, C, MacKay, J. The joy of copulas: bivariate distributions with uniform marginals. Am Stat 1986; 40: 280283.
Google Scholar | ISI
41. Karageorgopoulos, DE, Vouloumanou, EK, Ntziora, F β-D-Glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis 2011; 52: 750770.
Google Scholar | Medline | ISI
42. Ye, Y, Xie, H, Zhao, X The oral glucose tolerance test for the diagnosis of diabetes mellitus in patients during acute coronary syndrome hospitalization: a meta-analysis of diagnostic test accuracy. Cardiovasc Diabetol 2012; 11: 155155.
Google Scholar | Medline | ISI
43. Vuong, QH . Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 1989; 57: 307333.
Google Scholar | ISI
44. Genest, C, Favre, AC. Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 2007; 12: 347368.
Google Scholar | ISI
45. Shen, C, Weissfeld, L. A copula model for repeated measurements with non-ignorable non-monotone missing outcome. Stat Med 2006; 25: 24272440.
Google Scholar | Medline | ISI
46. Mavridis, D, White, IR, Higgins, JPT Allowing for uncertainty due to missing continuous outcome data in pairwise and network meta-analysis. Stat Med 2014; 34: 721741.
Google Scholar | Medline | ISI
47. Nikoloulopoulos AK. CopulaREMADA: copula random effects model for bivariate meta-analysis of diagnostic test accuracy studies; 2015, http://CRAN.R-project.org/package=CopulaREMADA.
Google Scholar
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

SMM-article-ppv for $41.50
Single Issue 24 hour E-access for $543.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top