For a particular disease, there may be two diagnostic tests developed, where each of the tests is subject to several studies. A quadrivariate generalised linear mixed model (GLMM) has been recently proposed to joint meta-analyse and compare two diagnostic tests. We propose a D-vine copula mixed model for joint meta-analysis and comparison of two diagnostic tests. Our general model includes the quadrivariate GLMM as a special case and can also operate on the original scale of sensitivities and specificities. The method allows the direct calculation of sensitivity and specificity for each test, as well as the parameters of the summary receiver operator characteristic (SROC) curve, along with a comparison between the SROCs of each test. Our methodology is demonstrated with an extensive simulation study and illustrated by meta-analysing two examples where two tests for the diagnosis of a particular disease are compared. Our study suggests that there can be an improvement on GLMM in fit to data since our model can also provide tail dependencies and asymmetries.

1. Jackson, D, Riley, R, White, IR. Multivariate meta-analysis: potential and promise. Stat Med 2011; 30: 24812498.
Google Scholar | Crossref | Medline | ISI
2. Mavridis, D, Salanti, G. A practical introduction to multivariate meta-analysis. Stat Meth Med Res 2013; 22: 133158.
Google Scholar | SAGE Journals | ISI
3. Ma, X, Nie, L, Cole, SR, et al. Statistical methods for multivariate meta-analysis of diagnostic tests: an overview and tutorial. Stat Meth Med Res 2016; 25: 15961619.
Google Scholar | SAGE Journals | ISI
4. Takwoingi, Y, Leeflang, M, Deeks, J. Empirical evidence of the importance of comparative studies of diagnostic test accuracy. Ann Intern Med 2013; 158: 544554.
Google Scholar | Crossref | Medline
5. Siadaty, MS, Shu, J. Proportional odds ratio model for comparison of diagnostic tests in meta-analysis. BMC Med Res Methodol 2004; 4: 2727.
Google Scholar | Crossref | Medline
6. Tatsioni, A, Zarin, D, Aronson, N, et al. Challenges in systematic reviews of diagnostic technologies. Ann Intern Med 2005; 142: 10481055.
Google Scholar | Crossref | Medline | ISI
7. Leeflang, M, Deeks, J, Gatsonis, C, et al. Systematic reviews of diagnostic test accuracy. Ann Intern Med 2008; 149: 889897.
Google Scholar | Crossref | Medline | ISI
8. Chu, H, Cole, SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach. J Clin Epidemiol 2006; 59: 13311332.
Google Scholar | Crossref | Medline | ISI
9. Trikalinos, TA, Hoaglin, DC, Small, KM, et al. Methods for the joint meta-analysis of multiple tests. Res Synth Meth 2014; 5: 294312.
Google Scholar | Crossref | Medline
10. Hoyer, A, Kuss, O. Meta-analysis for the comparison of two diagnostic tests to a common gold standard: a generalized linear mixed model approach. Stat Meth Med Res 2018; 27: 14101421.
Google Scholar | SAGE Journals | ISI
11. Nikoloulopoulos, AK . A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence. Stat Meth Med Res 2017; 26: 22702286.
Google Scholar | SAGE Journals | ISI
12. Hoyer, A, Kuss, O. Meta-analysis for the comparison of two diagnostic tests–a new approach based on copulas. Stat Med 2018; 37: 739748.
Google Scholar | Crossref | Medline
13. Joe, H . Multivariate models and dependence concepts, London, UK: Chapman & Hall, 1997.
Google Scholar | Crossref
14. Joe, H . Dependence modeling with copulas, London, UK: Chapman & Hall, 2014.
Google Scholar | Crossref
15. Nelsen, RB . An introduction to copulas, New York, NY: Springer-Verlag, 2006.
Google Scholar
16. Sklar, M . Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris 1959; 8: 229231.
Google Scholar
17. Nikoloulopoulos, AK, Joe, H. Factor copula models for item response data. Psychometrika 2015; 80: 126150.
Google Scholar | Crossref | Medline | ISI
18. Joe, H, Li, H, Nikoloulopoulos, AK. Tail dependence functions and vine copulas. J Multivariate Analys 2010; 101: 252270.
Google Scholar | Crossref | ISI
19. Nikoloulopoulos, AK, Joe, H, Li, H. Vine copulas with asymmetric tail dependence and applications to financial return data. Computat Stat Data Analys 2012; 56: 6593673.
Google Scholar | Crossref | ISI
20. Joe H. Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In: Rüschendorf L, Schweizer B and Taylor M (eds) Distributions with fixed marginals and related topics, vol. 28. Hayward, CA: Institute of Mathematical Statistics, pp.120–141.
Google Scholar
21. Nikoloulopoulos, AK . A mixed effect model for bivariate meta-analysis of diagnostic test accuracy studies using a copula representation of the random effects distribution. Stat Med 2015; 34: 38423865.
Google Scholar | Crossref | Medline | ISI
22. Kuss, O, Hoyer, A, Solms, A. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas. Stat Med 2014; 33: 1730.
Google Scholar | Crossref | Medline | ISI
23. Nikoloulopoulos, AK . Comment on ‘A vine copula mixed effect model for trivariate meta-analysis of diagnostic test accuracy studies accounting for disease prevalence’. Stat Meth Med Res 2016; 25: 988991.
Google Scholar | SAGE Journals | ISI
24. Nash, J . Compact numerical methods for computers: linear algebra and function minimisation, 2nd ed. New York, NY: Hilger, 1990.
Google Scholar
25. Stroud, AH, Secrest, D. Gaussian quadrature formulas, Englewood Cliffs, NJ: Prentice-Hall, 1966.
Google Scholar
26. Nikoloulopoulos, AK . Hybrid copula mixed models for combining case-control and cohort studies in meta-analysis of diagnostic tests. Stat Meth Med Res 2018; 27: 25402553.
Google Scholar | SAGE Journals | ISI
27. Nikoloulopoulos, AK . On composite likelihood in bivariate meta-analysis of diagnostic test accuracy studies. AStA Adv Stat Analys 2018; 102: 211227.
Google Scholar | Crossref
28. Nishimura, K, Sugiyama, D, Kogata, Y, et al. Meta-analysis: diagnostic accuracy of anti-cyclic citrullinated peptide antibody and rheumatoid factor for rheumatoid arthritis. Ann Intern Med 2007; 146: 797808.
Google Scholar | Crossref | Medline | ISI
29. Bennett, C, Guo, M, Dharmage, S. Hba1c as a screening tool for detection of type 2 diabetes: a systematic review. Diab Med 2007; 24: 333343.
Google Scholar | Crossref | Medline | ISI
30. Kodama, S, Horikawa, C, Fujihara, K, et al. Use of high-normal levels of haemoglobin a1c and fasting plasma glucose for diabetes screening and for prediction: a meta-analysis. Diab/Metab Res Rev 2013; 29: 680692.
Google Scholar | Crossref | Medline
31. Dimou, NL, Adam, M, Bagos, PG. A multivariate method for meta-analysis and comparison of diagnostic tests. Stat Med 2016; 35: 35093523.
Google Scholar | Crossref | Medline
32. Hua, L, Joe, H. Tail order and intermediate tail dependence of multivariate copulas. J Multivariate Analys 2011; 102: 14541471.
Google Scholar | Crossref | ISI
33. Nikoloulopoulos AK. CopulaREMADA: Copula mixed effect models for multivariate meta-analysis of diagnostic test accuracy studies, R package version 1.1, 2018. https://CRAN.R-project.org/package=CopulaREMADA.
Google Scholar
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

SMM-article-ppv for $41.50
Single Issue 24 hour E-access for $543.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top