We propose a new family of linear mixed-effects models based on the generalized Laplace distribution. Special cases include the classical normal mixed-effects model, models with Laplace random effects and errors, and models where Laplace and normal variates interchange their roles as random effects and errors. By using a scale-mixture representation of the generalized Laplace, we develop a maximum likelihood estimation approach based on Gaussian quadrature. For model selection, we propose likelihood ratio testing and we account for the situation in which the null hypothesis is at the boundary of the parameter space. In a simulation study, we investigate the finite sample properties of our proposed estimator and compare its performance to other flexible linear mixed-effects specifications. In two real data examples, we demonstrate the flexibility of our proposed model to solve applied problems commonly encountered in clustered data analysis. The newly proposed methods discussed in this paper are implemented in the R package nlmm.

1. Geraci, M, Cortina-Borja, M. The Laplace distribution. Significance 2018; 15:1011.
Google Scholar | Crossref
2. Kotz, S, Kozubowski, TJ, Podgórski, K. The Laplace distribution and generalizations. Boston: Birkhäuser, 2001.
Google Scholar | Crossref
3. Wilson, EB. First and second laws of error. J Am Stat Assoc 1923; 18:841851.
Google Scholar | Crossref
4. Bassett, G, Koenker, R. Asymptotic theory of least absolute error regression. J Am Stat Assoc 1978; 73:618622.
Google Scholar | Crossref | ISI
5. Koenker, R, Bassett, G. Regression quantiles. Econometrica 1978; 46:3350.
Google Scholar | Crossref | ISI
6. Yu, KM, Moyeed, RA. Bayesian quantile regression. Stat Probab Lett 2001; 54:437447.
Google Scholar | Crossref | ISI
7. Geraci, M, Bottai, M. Quantile regression for longitudinal data using the asymmetric Laplace distribution. Biostatistics 2007; 8:140154.
Google Scholar | Crossref | Medline | ISI
8. Farcomeni, A. Quantile regression for longitudinal data based on latent Markov subject-specific parameters. Stat Comput 2012; 22:141152.
Google Scholar | Crossref
9. Farcomeni, A, Viviani, S. Longitudinal quantile regression in presence of informative drop-out through longitudinal-survival joint modeling. Stat Med 2015; 34:11991213.
Google Scholar | Crossref | Medline
10. Marino, MF, Farcomeni, A. Linear quantile regression models for longitudinal experiments: an overview. Metron 2015; 73:229247.
Google Scholar | Crossref
11. Portnoy, S, Koenker, R. The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators. Stat Sci 1997; 12:279300.
Google Scholar | Crossref | ISI
12. Koenker, R, Ng, P. A Frisch–Newton algorithm for sparse quantile regression. Acta Math Appl Sin 2005; 21:225236.
Google Scholar | Crossref
13. Kozubowski, TJ, Nadarajah, S. Multitude of Laplace distributions. Stat Pap 2010; 51:127148.
Google Scholar | Crossref
14. Pinheiro, JC, Bates, DM. Mixed-effects models in S and S-PLUS. New York: Springer Verlag, 2000.
Google Scholar | Crossref
15. Demidenko, E. Mixed models: theory and applications with R. 2nd ed. Hoboken: John Wiley & Sons, 2013.
Google Scholar
16. Pinheiro, JC, Liu, C, Wu, YN. Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. J Comput Graph Stat 2001; 10:249276.
Google Scholar | Crossref | ISI
17. Staudenmayer, J, Lake, EE, Wand, MP. Robustness for general design mixed models using the t-distribution. Stat Model 2009; 9:235255.
Google Scholar | SAGE Journals | ISI
18. Zhang, D, Davidian, M. Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics 2001; 57:795802.
Google Scholar | Crossref | Medline | ISI
19. Dandine-Roulland, C, Perdry, H. The use of the linear mixed model in human genetics. Hum Hered 2015; 80:196206.
Google Scholar | Crossref | Medline
20. Raman, G, Balk, EM, Lai, L, et al. Evaluation of person-level heterogeneity of treatment effects in published multiperson N-of-1 studies: systematic review and reanalysis. BMJ Open 2018; 8:e017641.
Google Scholar | Crossref | Medline
21. R Core Team . R: A Language and environment for statistical computing. Vienna, Austria, 2019, www.R-project.org (accessed 11 December 2019).
Google Scholar
22. Kozubowski, TJ, Podgórski, K, Rychlik, I. Multivariate generalized Laplace distribution and related random fields. J Multivar Anal 2013; 113:5972.
Google Scholar | Crossref
23. Yavuz, FG, Arslan, O. Linear mixed model with Laplace distribution (LLMM). Stat Pap 2018; 59:271289.
Google Scholar | Crossref
24. Gómez, E, Gomez-Viilegas, MA, Marín, JM. A multivariate generalization of the power exponential family of distributions. Commun Stat Theory Methods 1998; 27:589600.
Google Scholar | Crossref
25. Ernst, MD. A multivariate generalized Laplace distribution. Comput Stat 1998; 13:227232.
Google Scholar
26. Kozubowski, TJ, Podgórski, K. A multivariate and asymmetric generalization of Laplace distribution. Comput Stat 2000; 15:531540.
Google Scholar | Crossref
27. Arslan, O. An alternative multivariate skew Laplace distribution: properties and estimation. Stat Pap 2010; 51:865887.
Google Scholar | Crossref
28. Reed, WJ. The normal-Laplace distribution and its relatives. In: Balakrishnan, N, Castillo, E, Sarabia, JM (ed.) Advances in distribution theory, order statistics, and inference. Boston: Birkhäuser, 2006, pp. 6174.
Google Scholar | Crossref
29. Reed, WJ. Brownian-Laplace motion and its use in financial modelling. Commun Stat Theory Methods 2007; 36:473484.
Google Scholar | Crossref
30. Meintanis, SG, Tsionas, E. Testing for the generalized normal-Laplace distribution with applications. Comput Stat Data Anal 2010; 54:31743180.
Google Scholar | Crossref
31. Reed, WJ, Jorgensen, M. The double Pareto-lognormal distribution—a new parametric model for size distributions. Commun Stat Theory Methods 2004; 33:17331753.
Google Scholar | Crossref
32. Geraci, M, Bottai, M. Linear quantile mixed models. Stat Comput 2014; 24:461479.
Google Scholar | Crossref | ISI
33. Muir, PR, Wallace, CC, Done, T, et al. Limited scope for latitudinal extension of reef corals. Science 2015; 348:11351138.
Google Scholar | Crossref | Medline
34. Duffy, LM, Olson, RJ, Lennert-Cody, CE, et al. Foraging ecology of silky sharks, Carcharhinus falciformis, captured by the tuna purse-seine fishery in the eastern Pacific Ocean. Mar Biol 2015; 162:571593.
Google Scholar | Crossref
35. Barneche, DR, Kulbicki, M, Floeter, SR, et al. Energetic and ecological constraints on population density of reef fishes. Proc R Soc B Biol Sci 2016; 283:18.
Google Scholar | Crossref
36. Fornaroli, R, Cabrini, R, Sartori, L, et al. Predicting the constraint effect of environmental characteristics on macroinvertebrate density and diversity using quantile regression mixed model. Hydrobiologia 2015; 742:153167.
Google Scholar | Crossref
37. Degerud, E, Løland, KH, Nygård, O, et al. Vitamin D status was not associated with ‘one-year’ progression of coronary artery disease, assessed by coronary angiography in statin-treated patients. Eur J Prev Cardiol 2014; 22:594602.
Google Scholar | SAGE Journals
38. Blankenberg, S, Salomaa, V, Makarova, N, et al. Troponin I and cardiovascular risk prediction in the general population: the BiomarCaRE consortium. Eur Heart J 2016; 37:24282437.
Google Scholar | Crossref | Medline | ISI
39. Ng, SW, Howard, AG, Wang, HJ, et al. The physical activity transition among adults in China: 1991–2011. Obes Rev 2014; 15:2736.
Google Scholar | Crossref | Medline
40. Beets, MW, Weaver, RG, Turner-McGrievy, G, et al. Are we there yet? Compliance with physical activity standards in YMCA afterschool programs. Child Obes 2016; 12:237246.
Google Scholar | Crossref | Medline
41. Patel, DE, Cumberland, PM, Walters, BC, et al. Study of optimal perimetric testing in children (OPTIC): normative visual field values in children. Ophthalmology 2015; 122:17111717.
Google Scholar | Crossref | Medline
42. Patel, DE, Geraci, M, Cortina-Borja, M. Modelling normative kinetic perimetry isopters using mixed-effects quantile regression. J Vis 2016; 16:16.
Google Scholar | Crossref
43. Prékopa, A. Logarithmic concave measures and functions. Acta Sci Math 1973; 34:334343.
Google Scholar
44. Geraci, M. Mixed-effects models using the normal and the Laplace distributions: a 2 × 2 convolution scheme for applied research. ArXiv e-prints 2017; 1712.07216.
Google Scholar
45. Geraci, M. nlmm: Generalized Laplace mixed-effects models, 2019. R package version 1.0.0, https://github.com/marco-geraci/nlmm (accessed 11 December 2019).
Google Scholar
46. McLachlan, G, Krishnan, T. The EM algorithm and extensions. Hoboken: John Wiley & Sons, 2008.
Google Scholar | Crossref
47. Geraci, M. Letter to the Editor. Stat Interface 2019; 12:7175.
Google Scholar | Crossref | Medline
48. Galarza, CE, Lachos, VH, Bandyopadhyay, D. Quantile regression in linear mixed models: a stochastic approximation EM approach. Stat Interface 2017; 10:471482.
Google Scholar | Crossref | Medline
49. Silvapulle, MJ, Sen, PK. Constrained statistical inference: inequality, order, and shape restrictions. New York: John Wiley & Sons; 2004.
Google Scholar
50. Shapiro, A. Towards a unified theory of inequality constrained testing in multivariate analysis. Int Stat Rev 1988; 56:4962.
Google Scholar | Crossref | ISI
51. Farcomeni, A. A review of modern multiple hypothesis testing, with particular attention to the false discovery proportion. Stat Methods Med Res 2008; 17:347388.
Google Scholar | SAGE Journals | ISI
52. Pinheiro, J, Bates, D, DebRoy, S, et al., R Core Team. nlme: linear and nonlinear mixed effects models; 2014. R package version 3.1-117, http://CRAN.R-project.org/package=nlme (accessed 11 December 2019).
Google Scholar
53. Douglas, B, Mächler, M, Bolker, B, et al. Fitting linear mixed-effects models using lme4. J Stat Softw 2015; 67:148.
Google Scholar
54. Geraci, M. Linear quantile mixed models: the lqmm package for Laplace quantile regression. J Stat Softw 2014; 57:129.
Google Scholar | Crossref | Medline
55. Osorio, F. heavy: Robust estimation using heavy-tailed distributions, 2018. R package version 0.38.19, https://CRAN.R-project.org/package=heavy (accessed 11 December 2019).
Google Scholar
56. Sorrentino, D, Paviotti, A, Terrosu, G, et al. Low-dose maintenance therapy with infliximab prevents postsurgical recurrence of Crohn’s disease. Clin Gastroenterol Hepatol 2010; 8:591599.
Google Scholar | Crossref | Medline | ISI
57. Box, GEP. Problems in the analysis of growth and wear curves. Biometrics 1950; 6:362389.
Google Scholar | Crossref | Medline | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

SMM-article-ppv for $41.50
Single Issue 24 hour E-access for $543.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top