The use of mixture distributions in genetics research dates back to at least the late 1800s when Karl Pearson applied them in an analysis of crab morphometry. Pearson's use of normal mixture distributions to model the mixing of different species of crab (or 'families' of crab as he referred to them) within a defined geographic area motivated further use of mixture distributions in genetics research settings, and ultimately led to their development and recognition as intuitive modelling devices for the effects of underlying genes on quantitative phenotypic (i.e. trait) expression. In addition, mixture distributions are now used routinely to model or accommodate the genetic heterogeneity thought to underlie many human diseases. Specific applications of mixture distribution models in contemporary human genetics research are, in fact, too numerous to count. Despite this long, consistent and arguably illustrious history of use, little mention of mixture distributions in genetics research is made in many recent reviews on mixture models. This review attempts to rectify this by providing insight into the role that mixture distributions play in contemporary human genetics research. Tables providing examples from the litera ture that describe applications of mixture models in human genetics research are offered as a way of acquainting the interested reader with relevant studies. In addition, some of the more problematic aspects of the use of mixture models in genetics research are outlined and addressed.

Titterington DM , Smith Afm , Makov UE Statistical analysis of finite mixture distributions. New York: John Wiley and Sons, 1985 .
Google Scholar
McLachlan GJ , Basford KE Mixture models: inference and application to clustering. New York: Marcel Dekker, Inc., 1988 .
Google Scholar
Weldon Wfr. On certain correlated variations in Carcinus moenas. Royal Society Proceedings 1890; 47: 445-80.
Google Scholar
Pearson KP Contributions to the mathematical theory of evolution. II. Skew variation in homogenous material. Philosophical Transactions 1895; A186: 342-414.
Google Scholar
Pearson K. Contributions to the mathematical theory of evolution. Philosophical Transactions 1893; A185: 71-110.
Google Scholar
Thompson MW , McInnes RR , Willard HF Genetics in Medicine, fifth edition. Philadelphia: Saunders, 1991.
Google Scholar
Schleif RF Genetics and molecular biology. Reading, MA: Addison-Wesley, 1986.
Google Scholar
Rothwell NV Understanding genetics. New York: Wiley-Liss, 1993.
Google Scholar
Thompson EA Pedigree analysis in human genetics. Baltimore: Johns Hopkins University Press, 1986.
Google Scholar
Falconer DS Introduction to quantitative genetics, third edition. Essex: Longman Scientific and Technical, 1989.
Google Scholar
Morton NE , MacLean CJ , Kagan A. et al. Commingling in distributions of lipids and related variables . American Journal of Human Genetics 1977; 29: 52-59.
Google Scholar | Medline | ISI
Greenberg LJ , Bradley PW , Chopyk R-L. , Lalouel J-M. Immunogenetics of response to a purified antigen from Group A Streptococci. Immunogenetics 1980; 11: 145-60.
Google Scholar | Crossref | Medline | ISI
Penno MB , Vessel ES Monogenic control of variations in antipyrine metabolite formation. Journal of Clinical Investigation 1983; 71: 1698-1709.
Google Scholar | Crossref | Medline | ISI
Lalouel JM , Darlu P. , Henrotte JG , Rao DC Genetic regulation of plasma and red blood cell magnesium concentration in man. II. Segregation analysis. American Journal of Human Genetics 1983; 35: 938-50.
Google Scholar | Medline | ISI
Darlu P. , Lalouel JM , Henrotte JG , Rao DC A genetic study of red blood cell zinc concentration in man. Human Heredity 1983; 33: 311-18.
Google Scholar | Crossref | Medline | ISI
McGue M. , Laskarzewski P. , Rao DC , Glueck CJ The Cincinnati Lipid Research Clinic Family Study: commingling in the distributions of lipids and lipoprotein concentrations. Human Heredity 1983; 33: 223-30.
Google Scholar | Crossref | Medline | ISI
Sharma K. , Byard PJ , Rao DC Commingling in the distributions of fat-related measures in Punjabi families . Human Heredity 1984; 34: 278-84.
Google Scholar | Crossref | Medline | ISI
Laskarzewski PM , Rao DC , Glueck CJ The Cincinnati Lipid Research Clinic Family Study: analysis of commingling and family resemblance for fasting blood glucose . Genetic Epidemiology 1984; 1: 341-55.
Google Scholar | Crossref | Medline
Devor EJ , Crawford MH A commingling analysis of quantitative neuromuscular performance in a Kansas Mennonite community. American Journal of Physical Anthropology 1984; 63: 29-37.
Google Scholar | Crossref | Medline | ISI
Griggs LH , Chapman CJ , McHaffie DJ Inheritance of atrioventricular conduction time in Tokelau Islanders. Clinical Genetics 1986; 29: 56-61.
Google Scholar | Crossref | Medline | ISI
Friedlander Y. , Kark JD , Stein Y. Family resemblance for serum uric acid in a Jerusalem sample of families. Human Genetics 1988; 79: 58-63.
Google Scholar | Crossref | Medline | ISI
McGue M. , Gerrard JW , Lebowitz MD , Rao DC Commingling in the distributions of immunoglobulin levels. Human Heredity 1989; 39: 196-201.
Google Scholar | Crossref | Medline | ISI
Price AR , Spielman RS , Lucena AL , Van Loon JA , Maidak BL , Weinshilboum RM Genetic polymorphism for human platelet thermostable phenol sulfotransferase (TS PST) activity. Genetics 1989; 122: 905-14.
Google Scholar | Medline | ISI
Rice T. , Bouchard C. , Borecki IB , Rao DC Commingling and segregation analysis of blood pressure in a French-Canadian population. American Journal of Human Genetics 1990; 46: 37-44.
Google Scholar | Medline | ISI
Moldin SO , Rice JP , Gottesman II , Erlenmeyer-Kimling L. Transmission of a psychometric indicator for liability to schizophrenia in normal families. Genetic Epidemiology 1990 ; 7: 163-76.
Google Scholar | Crossref | Medline | ISI
Rice T. , Laskarzewski PM , Perry TS , Rao DC Commingling and segregation analysis of serum uric acid in five North American populations: the Lipid Research Clinics family study. Human Genetics 1992; 90: 133-38.
Google Scholar | Crossref | Medline | ISI
Rice T. , Laskarzewski PM , Rao DC Commingling and complex segregation analysis of fasting plasma glucose in the Lipid Research Clinics family study. American Journal of Medical Genetics 1992; 44: 399-404.
Google Scholar | Crossref | Medline | ISI
Weissbecker KA Segregation analysis of diastolic blood pressure in a large pedigree. Genetic Epidemiology 1993; 10: 659-64.
Google Scholar | Crossref | Medline | ISI
Austin MA , Newman B. , Selby JV , Edwards K. , Mayer EJ , Krauss RM Genetics of LDL subclass phenotypes in women twins. Arteriosclerosis and Thrombosis 1993; 13: 687-95.
Google Scholar | Crossref | Medline
Rice T. , Borecki IB , Bouchard C. , Rao DC Segregation analysis of fat mass and other body composition measures derived from underwater weighing. American Journal of Human Genetics 1993; 52: 967-73.
Google Scholar | Medline | ISI
Palmer Cgs , Wolkenstein BH , La Rue A. , Swan GE , Smalley SL Commingling analysis of memory performance in elderly men. Genetic Epidemiology 1994; 11: 443-49.
Google Scholar | Crossref | Medline | ISI
Lawrence S. , Beasly R. , Doull I. et al. Genetic analysis of atopy and asthma as quantitative traits and ordered polychotomies. Annals of Human Genetics 1994; 58: 359-68.
Google Scholar | Crossref | Medline | ISI
Gilger JW , Borecki IB , DeFries JC , Pennington BF Commingling and segregation analysis of reading performance in families of normal reading probands. Behavior Genetics 1994; 24: 345-55.
Google Scholar | Crossref | Medline | ISI
Friedlander Y. , Leitersdorf E. Segregation analysis of plasma lipoprotein(a) levels in pedigrees with molecularly defined familial hypercholesterolemia . Genetic Epidemiology 1995; 12: 129-43.
Google Scholar | Crossref | Medline | ISI
Friedlander Y. , Elkana Y. , Sinnreich R. , Kark JD Genetic and environmental sources of fibrinogen variability in Israeli families: the Kibbutzim family study. American Journal of Human Genetics 1995; 56: 1194-206.
Google Scholar | Medline | ISI
Heiba IM , Elston RC , Klein BE , Klein R. Evidence for a major gene for cortical cataract. Investigative Ophthalmology and Visual Science 1995; 36: 227-35.
Google Scholar | Medline | ISI
Price R. , Strunkard A. Commingling analysis of obesity in twins. Human Heredity 1989; 39: 121-35.
Google Scholar | Crossref | Medline | ISI
Price R. , Ness R. , Laskarzewski P. Common major gene inheritance of extreme overweight. Human Biology 1990; 62: 747-65.
Google Scholar | Medline | ISI
Ness R. , Laskarzewski P. , Price R. Inheritance of extreme overweight in black families. Human Biology 1991; 63: 39-52.
Google Scholar | Medline | ISI
Borecki I. , Rice T. , Bouchard C. , Rao DC Commingling analysis of generalized body mass and composition measures: the Quebec Family Study. International Journal of Obesity 1991; 15: 763-73.
Google Scholar | Medline | ISI
Moll PP , Burns T. , Lauer R. The genetic and environmental sources of body mass index variability: the Muscatine Ponderosity Family Study. American Journal of Human Genetics 1991; 49: 1243-55.
Google Scholar | Medline | ISI
Price R. , Ness R. , Sorenson T. Changes in commingled body mass index distributions associated with secular trends in overweight among Danish men. American Journal of Epidemiology 1991; 133: 501-510.
Google Scholar | Crossref | Medline | ISI
Price R. , Lunetta K. , Ness R. et al. Obesity in Pima Indians: distribution characteristics and possible thresholds for genetic studies. International Journal of Obesity 1992; 16: 851-57.
Google Scholar | ISI
Mitchell LE , Nirmala A. , Rice T. , Reddy PC , Rao DC Commingling analysis of adiposity in an Indian population. International Journal of Obesity 1994; 18: 1-8.
Google Scholar | ISI
Allison DB , Heshka S. , Heymsfield SB Evidence of a major gene with pleiotropic action for a cardiovascular disease risk syndrome in children younger than 14 years. American Journal of Diseases of Children 1993; 147: 1298-302.
Google Scholar | Medline
Lange K. Central limit theorems for pedigrees. Journal of Mathematical Biology 1978; 6: 59-66.
Google Scholar | Crossref | ISI
Makuch R. , Freeman D. , Johnson M. Justification of the lognormal distribution as a model for blood pressure . Journal of Chronic Diseases 1979; 32: 245-50.
Google Scholar | Crossref | Medline
MacLean C. , Morton N. , Elston R. , Yee S. Skewness in commingled distributions. Biometrics 1976; 32: 695-99.
Google Scholar | Crossref | Medline | ISI
Ott J. Detection of rare major genes in lipid levels. Human Genetics 1979; 51: 79-91.
Google Scholar | Crossref | Medline | ISI
Schork N. , Schork M. Skewness and mixtures of normal distributions. Communications in Statistics: Theory and Methods 1988; 17: 3951-70.
Google Scholar | Crossref | ISI
Schork N. , Weder A. , Schork M. On the asymmetry of biological frequency distributions. Genetic Epidemiology 1990; 7: 427-46.
Google Scholar | Crossref | Medline | ISI
Gray G. Bias in misspecified mixtures. Biometrics 1994; 52: 457-70.
Google Scholar | Crossref | ISI
Schork N. Combining Monte Carlo and Cox tests of non-nested hypotheses. Communications in Statistics: Simulation and Computation 1993; 22: 939-54.
Google Scholar | Crossref | ISI
Ghosh J. , Sen P. On the asymptotic properties of the log likelihood ratio statistic for the mixture model and related issues. In: LeCam L, Olshen R eds. Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Keifer . Volume 2. Monterey: Wadsworth, 1985: 789-806.
Google Scholar
Hartigan J. A failure of likelihood asymptotics for normal mixtures. In: LeCam L, Olshen R eds. Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Keifer. Volume 2. Monterey: Wadsworth, 1985: 807-10.
Google Scholar
McLachlan G. On bootstrapping the likelihood ratio test statistics for the number of components in a normal mixture. Applied Statistics 1987; 36: 318-24.
Google Scholar | Crossref | ISI
Schork N. Bootstrapping likelihood ratios in quantitative genetics. In: Lepage R , Billard L eds. Exploring the limits of the bootstrap. New York: Wiley, 1992: 389-93.
Google Scholar
Berg K. Variability gene effect on cholesterol at the Kidd blood group locus. Clinical Genetics 1988; 33: 102-107.
Google Scholar | Crossref | Medline | ISI
Magnus P. , Berg K. , Borresen A. , Nance W. Apparent influence of marker genotypes on variation in serum cholesterol in monozygotic twins. Clinical Genetics 1981; 19: 67-70.
Google Scholar | Crossref | Medline | ISI
Weder AB , Schork NJ Mixture analysis of erythrocyte lithium-sodium countertransport and blood pressure. Hypertension 1989; 13: 145-50.
Google Scholar | Crossref | Medline | ISI
Namboodiri K. , Elston R. , Glueck C. , Fallat R. , Buncher C. , Tsang R. Bivariate analyses of cholesterol and triglyceride levels in families in which probands have type IIb lipoprotein phenotype. American Journal of Human GEnetics 1975; 27: 454-71.
Google Scholar | Medline | ISI
Boehnke M. , Moll P. , Lange K. , Weidman W. , Kottke B. Univariate and bivariate analyses of cholesterol and triglyceride levels in pedigrees. American Journal of Medical Genetics 1986; 23: 775-92.
Google Scholar | Crossref | Medline | ISI
Murphy E. Once cause? Many causes? The argument from the bimodal distribution. Journal of Chronic Diseases 1964; 17: 301-24.
Google Scholar | Crossref | Medline
Morton NE , MacLean CJ. Analysis of family resemblance. III. Complex segregation analysis of complex traits. American Journal of Human Genetics 1974; 26: 489-503.
Google Scholar | Medline | ISI
Elston RC Segregation analysis. In: Harris H , Hirshhorn K eds. Advances in human genetics . New York: Plenum, 1981: 63-120.
Google Scholar | Crossref
Ott J. Maximum likelihood estimation by counting methods under polygenic and mixed models in human pedigree analysis. American Journal of Human Genetics 1979; 31: 161-75.
Google Scholar | Medline | ISI
Elston RC , Stewart J. A general model for the analysis of pedigree data. Human Heredity 1971; 21: 323-42.
Google Scholar | Crossref | ISI
Lange K. , Westlake J. , Spence MA Extensions to pedigree analysis. III. Variance components by the scoring method . Annals of Human Genetics 1976; 39: 485-91.
Google Scholar | Crossref | Medline | ISI
Jacquard A. The genetic structure of populations. New York: Springer, 1974.
Google Scholar | Crossref
Boyle CR , Elston RC Multifactorial genetic models for quantitative traits in humans. Biometrics 1979; 35: 55-68.
Google Scholar | Crossref | Medline | ISI
Elston RC Segregation analysis. In: Harris H , Hirshhorn K eds. Advances in Human Genetics . New York: Plenum, 1981: 63-120.
Google Scholar | Crossref
Hasstedt SJ A mixed-model likelihood approximation on large pedigrees. Computers and Biomedical Research 1982; 15: 295-307.
Google Scholar | Crossref | Medline
Lalouel JM , Rao DC , Morton NE , Elston RC A unified model for complex segregation analysis. American Journal of Human Genetics 1983; 35: 816-26.
Google Scholar | Medline | ISI
Bonney GE On the statistical determination of major gene mechanisms in continuous human traits: regressive models. American Journal of Medical Genetics 1984; 35: 816-26.
Google Scholar
Moll P. , Sing C. , Lussier-Cacan S. , Davignon J. An application of a model for a genotype-dependent relationship between a concomitant (age) and a quantitative trait (LDL cholesterol) in pedigree data . Genetic Epidemiology 1984; 1: 301-14.
Google Scholar | Crossref | Medline
Moll PP , Berry TD , Weidman WH , Ellefson R. , Gordon H. , Kottke BA Detection of genetic heterogeneity among pedigrees through complex segregation analysis: an application to hypercholesterolemia. American Journal of Human Genetics 1984; 36: 197-211.
Google Scholar | Medline | ISI
Burns TL Sampling considerations for the determination of genetic transmission mechanisms in quantitative traits. [Dissertation]. Ann Arbor: University of Michigan, 1982.
Google Scholar
Demenais F. , Lathrop M. , Lalouel J. Robustness and power of the unified model in the analysis of quantitative measurements. American Journal of Human Genetics 1986; 38: 228-34.
Google Scholar | Medline | ISI
Bonney GE , Lathrop GM , Lalouel JM Combined linkage and segregation analysis using regressive models. American Journal of Human Genetics 1988; 43: 29-37.
Google Scholar | Medline | ISI
Demenais FM , Bonney GE Equivalence of the mixed and regressive models for genetic analysis. I. Continuous traits. Genetic Epidemiology 1989; 6: 597-617.
Google Scholar | Crossref | Medline | ISI
Hasstedt S. , Moll P. Estimation of genetic model parameters: variables correlated with a quantitative phenotype exhibiting major locus inheritance . Genetic Epidemiology 1989; 6: 319-22.
Google Scholar | Crossref | Medline | ISI
Konigsberg LW , Kammerer CM , MacCluer JW. Segregation analysis of quantitative traits in nuclear families: comparison of three program packages. Genetic Epidemiology 1989; 6: 713-26.
Google Scholar | Crossref | Medline | ISI
Schork N. , Schork M. Testing separate families of segregation hypotheses: bootstrap methods. American Journal of Human Genetics 1989; 45: 803-13.
Google Scholar | Medline | ISI
Wilson AF , Elston RC , Sellers TA et al. Stepwise oligogenic segregation and linkage analysis illustrated with Dopamine-Beta-Hydroxylase Activity. American Journal of Medical Genetics 1990; 35: 425-32.
Google Scholar | Crossref | Medline | ISI
Kwon JM , Boehnke M. , Burns TL , Moll PP Commingling and segregation analyses: comparison of results from a simulation study of a quantitative trait. Genetic Epidemiology 1990; 7: 57-68.
Google Scholar | Crossref | Medline | ISI
Boehnke M. , Moll PP Identifying pedigrees segregating at a major locus for a quantitative trait: an efficient strategy for linkage analysis. American Journal of Human Genetics 1989; 44: 216-24.
Google Scholar | Medline | ISI
Boehnke M. Sample-size guidelines for linkage analysis of a dominant locus for a quantitative trait by the method of lod scores. American Journal of Human Genetics 1990; 47: 218-27.
Google Scholar | Medline | ISI
Demenais FM , Murigande C. , Bonney GE Search for faster methods of fitting the regressive models to quantitative traits. Genetic Epidemiology 1990; 7: 319-34.
Google Scholar | Crossref | Medline | ISI
Blangero J. , Konigsberg L. Multivariate segregation analysis using the mixed model. Genetic Epidemiology 1991; 8: 299-316.
Google Scholar | Crossref | Medline | ISI
Schork N. Efficient computation of patterned covariance matrix mixed models in quantitative segregation analysis. Genetic Epidemiology 1991; 8: 29-46.
Google Scholar | Crossref | Medline | ISI
Schork N. The parallel computation of pedigree likelihoods. In: Billard L ed. Twenty-third Symposium on the Interface of Computer Science and Statistics. Seattle, Washington: Interface Foundation of North America, 1991: 262-65.
Google Scholar
Elston R. , George V. , Severtson F. The Elston-Stewart algorithm for continuous genotypes and environmental factors . Human Heredity 1992; 42: 16-27.
Google Scholar | Crossref | Medline | ISI
Thomas DC , Cortessis V. A Gibbs sampling approach to linkage analysis. Human Heredity 1992; 42(1): 63-76.
Google Scholar | Crossref | Medline | ISI
Bonney G. Compound regressive models for family data. Human Heredity 1992; 42: 28-41.
Google Scholar | Crossref | Medline | ISI
Guo SW , Thompson EA A Monte Carlo method for combined segregation and linkage analysis. American Journal of Human Genetics 1992; 51: 1111-26.
Google Scholar | Medline | ISI
Schork NJ The design and use of variance component models in the analysis of human quantitative pedigree data. Biometrical Journal 1993; 4: 387-405.
Google Scholar | Crossref | ISI
Tiret L. , Abel L. , Rakotovao R. Effect of ignoring genotype-environment interaction on segregation analysis of quantitative traits. Genetic Epidemiology 1993; 10: 581-86.
Google Scholar | Crossref | Medline | ISI
Demenais F. , Lathrop M. Use of the regressive models in linkage analysis of quantitative traits. Genetic Epidemiology 1993; 10: 587-92.
Google Scholar | Crossref | Medline | ISI
Bagchi D. Compound regressive models for quantitative multivariate phenotypes: application to lipid and lipoprotein data. Genetic Epidemiology 1993; 10: 647-51.
Google Scholar | Crossref | Medline | ISI
Hasstedt S. Variance components/major locus likelihood approximation for quantitative, polychotomous, and multivariate data. Genetic Epidemiology 1993; 10: 145-58.
Google Scholar | Crossref | Medline | ISI
Mack WJ , Gauderman WJ , Thomas DC A bivariate genetic analysis of HDL- and LDL-cholesterol incorporating measured covariates: a Gibbs sampling application. Genetic Epidemiology 1993; 10(6): 623-28.
Google Scholar | Crossref | Medline | ISI
Stricker C. , Fernando RL , Elston RC Segregation analysis under an alternative formulation for the mixed model . Genetic Epidemiology 1993; 10(6): 653-68.
Google Scholar | Crossref | Medline | ISI
Guo SW , Thompson EA Monte Carlo estimation of mixed models for large complex pedigrees. Biometrics 1994; 50(2): 417-32.
Google Scholar | Crossref | Medline | ISI
Boerwinkle E. , Sing CF The use of measured genotype information in the analysis of quantitative phenotypes in man. III. Simultaneous estimation of the frequencies and effects of the apolipoprotein E polymorphism and residual polygenetic effects on cholesterol, betalipoprotein and triglyceride levels . Annals of Human Genetics 1987; 51: 211-26.
Google Scholar | Medline | ISI
George CT , Elston RC Testing the association between polymorphic markers and quantitative traits in pedigrees. Genetic Epidemiology 1987; 4: 193-201.
Google Scholar | Crossref | Medline | ISI
Silverman EK , Province MA , Campbell EJ , Pierce JA , Rao DC Family study of α1antitrypsin deficiency: effects of cigarette smoking, measured genotype, and their interaction on pulmonary function and biochemical traits. Genetic Epidemiology 1992; 9: 317-31.
Google Scholar | Crossref | Medline | ISI
Boerwinkle E. , Leffert CC , Lin J. , Lackner C. , Chiesa G. , Hobbs HH Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. Journal of Clinical Investigation 1992; 90: 52-60.
Google Scholar | Crossref | Medline | ISI
Hallman D. , Visvikis S. , Steinmetz J. , Boerwinkle E. The effect of variation in the apolipoprotein B gene on plasmid lipid and apolipoprotein B levels. I. A likelihood-based approach to cladistic analysis. Annals of Human Genetics 1994; 58: 35-64.
Google Scholar | Crossref | Medline | ISI
Kravitz K. , Skolnick M. , Cannings C. et al. Genetic linkage between heredity hemochromatosis and HLA. 1979; 31: 601-19.
Google Scholar
Leppert MF , Hasstedt SJ , Holm T. et al. A DNA probe for the LDL receptor gene is tightly linked to hypercholesterolemia in a pedigree with early coronary disease. American Journal of Human Genetics 1986; 39: 300-306.
Google Scholar | Medline | ISI
Berg K. , Heiberg A. Linkage studies on familial hyperlipoproteinemia with xanthomatosis: normal lipoprotein markers and the C3 polymorphism. Birth Defects 1976; 3: 266-70.
Google Scholar
Elston RC , Namboodiri KK , Go Rcp , Siervogel RM , Glueck CJ Probable linkage between essential familial hypercholesteremia and third complement (C3). Cytogenetics and Cell Genetics 1976; 3: 294-97.
Google Scholar | Crossref
Prochazka M. , Lillioja S. , Tait JF et al. Linkage of chromosomal markers on 4q with a putative gene determining maximal insulin action in Pima Indians. Diabetes 1993; 42: 514-19.
Google Scholar | Crossref | Medline | ISI
Boerwinkle E. , Charkraborty R. , Sing CF The use of measured genotype information in the analysis of quantitative phenotypes in man. I. Models and analytical methods. Annals of Human Genetics 1986; 50: 181-94.
Google Scholar | Crossref | Medline | ISI
Goldgar DE , Multipoint analysis of human quantitative variation . American Journal of Human Genetics 1990; 47: 957-67.
Google Scholar | Medline | ISI
Schork NJ Extended multipoint identity-by-descent analysis of human quantitative traits: Efficiency, power, and modeling considerations. American Journal of Human Genetics 1993; 53: 1306-19.
Google Scholar | Medline | ISI
Amos CI Robust variance components approach for assessing genetic linkage in pedigrees . American Journal of Human Genetics 1994; 54: 535-43.
Google Scholar | Medline | ISI
Ott J. Analysis of human genetic linkage. Baltimore: Johns Hopkins University Press, 1991.
Google Scholar
Haseman JK , Elston RC The investigation of linkage between a quantitative trait and a marker locus. Behavior Genetics 1972; 2: 3-19.
Google Scholar | Crossref | Medline | ISI
Kruglyak L. , Lander ES Complete multipoint sib pair analysis of qualitative and quantitative traits. American Journal of Human Genetics 1995; 57: 439-54.
Google Scholar | Medline | ISI
Schork NJ Detection of genetic heterogeneity for complex quantitative phenotypes. Genetic Epidemiology 1992; 9: 207-23.
Google Scholar | Crossref | Medline | ISI
Kelsell D. , Stevens H. , Ratnavel R. et al. Genetic linkage studies in nonepidermolytic palmoplantar keratoderma: evidence for heterogeneity. Human Molecular Genetics 1995; 4: 1021-25.
Google Scholar | Crossref | Medline | ISI
Wang S. , Sun C. , Walczak C. et al. Evidence for a susceptibility locus for schizophrenia on chromosome 6pter-p22. Nature Genetics 1995; 10: 41-46.
Google Scholar | Crossref | Medline | ISI
Samson F. , Mesnard L. , Heimburger M. et al. Genetic linkage heterogeneity in myotubular myopathy. American Journal of Human Genetics 1995; 57: 120-26.
Google Scholar | Medline | ISI
Allamand V. , Broux O. , Bourg N. et al. Genetic heterogeneity of autosomal recessive limb-girdle muscular dystrophy in a genetic isolate (Amish) and evidence for a new locus. Human Molecular Genetics 1995; 4: 459-63.
Google Scholar | Crossref | Medline | ISI
Constantinou-Deltas C. , Papageorgiou E. , Boteva K. et al. Geneteic heterogeneity in adult dominant polycystic kidney disease in Cypriot families. Human Genetics 1995; 4: 416-23.
Google Scholar
Steinlein O. , Schuster V. , Fischer C. , Haussler M. Benign familial neonatal convulsions: confirmation of genetic heterogeneity and further evidence for a second locus on chromosome . Human Genetics 1995; 95: 411-15.
Google Scholar | Crossref | Medline | ISI
St Clair D. , Bolt J. , Morris S. , Doyle D. Herditary multi-infarct dementia unlinked to chromosome 19q12 in a large Scottish pedigree: evidence of probable locus heterogeneity. Journal of Medical Genetics 1995; 32: 57-60.
Google Scholar | Crossref | Medline | ISI
Heutink P. , Haitjema T. , Breedveld G. et al. Linkage of hereditary haemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. Journal of Medical Genetics 1994; 31: 933-36.
Google Scholar | Crossref | Medline | ISI
McAllister K. , Lennon F. , Bowles-Biesecker B. et al. Genetic heterogeneity in hereditary haemorrhagic telangiectasia: possible correlation with clinical phenotype. Journal of Medical Genetics 1994 ; 31: 927-32.
Google Scholar | Crossref | Medline | ISI
MacGeoch C. , Bishop J. , Bataille V. et al. Genetic heterogeneity in familial malignant melanoma. Human Molecular Genetics 1994; 3: 2195-200.
Google Scholar | Crossref | Medline | ISI
Robin N. , Feldman G. , Mitchell H. et al. Linkage of Pfeiffer syndrome to chromosome 8 centromere and evidence for genetic heterogeneity. Human Molecular Genetics 1994; 3: 2153-58.
Google Scholar | Medline | ISI
Basson C. , Solomon S. , Weissman B. et al. Genetic heterogeneity of heart-hand syndromes. Circulation 1995; 91: 1326-29.
Google Scholar | Crossref | Medline | ISI
Ihara T. , Sasaki H. , Wakisaka A. et al. Genetic heterogeneity of dominantly inherited olivopontocerebellar atrophy (OPCA) in the Japanese: linkage study of two pedigrees and evidence for the disease locus on chromosome 12q (SCA2). Japanese Journal of Human Genetics 1994; 39: 305-13.
Google Scholar | Crossref | Medline
Schiliro G. , Di Gregorio F. , Samperi P. et al. Genetic heterogeneity of beta-thalassemia in southeast Sicily. American Journal of Hematology 1995; 48: 5-11.
Google Scholar | Crossref | Medline | ISI
Hopper JL , Mathews JD Extensions to multivariate normal models for pedigree analysis. Annals of Human Genetics 1982; 46: 373-83.
Google Scholar | Crossref | Medline | ISI
Beaty TH , Self SG , Liang KY , Conolly MA , Chase GA , Kwiterovich PO Use of robust variance covariance models to analyse triglyceride data in families . Annals of Human Genetics 1985; 49: 315-28.
Google Scholar | Crossref | Medline | ISI
Smith Cab. Testing for heterogenicity of recombination fraction values in human genetics. Annals of Human Genetics 1963; 27: 175-82.
Google Scholar | Crossref | Medline | ISI
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

SMM-article-ppv for $41.50
Single Issue 24 hour E-access for $543.66

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top