Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published online May 27, 2018

Dysfunctional Nav1.5 channels due to SCN5A mutations

Abstract

The voltage-gated sodium channel 1.5 (Nav1.5), encoded by the SCN5A gene, is responsible for the rising phase of the action potential of cardiomyocytes. The sodium current mediated by Nav1.5 consists of peak and late components (INa-P and INa-L). Mutant Nav1.5 causes alterations in the peak and late sodium current and is associated with an increasingly wide range of congenital arrhythmias. More than 400 mutations have been identified in the SCN5A gene. Although the mechanisms of SCN5A mutations leading to a variety of arrhythmias can be classified according to the alteration of INa-P and INa-L as gain-of-function, loss-of-function and both, few researchers have summarized the mechanisms in this way before. In this review article, we aim to review the mechanisms underlying dysfunctional Nav1.5 due to SCN5A mutations and to provide some new insights into further approaches in the treatment of arrhythmias.

Impact statement

The field of ion channelopathy caused by dysfunctional Nav1.5 due to SCN5A mutations is rapidly evolving as novel technologies of electrophysiology are introduced and our understanding of the mechanisms of various arrhythmias develops. In this review, we focus on the dysfunctional Nav1.5 related to arrhythmias and the underlying mechanisms. We update SCN5A mutations in a precise way since 2013 and presents novel classifications of SCN5A mutations responsible for the dysfunction of the peak (INa-P) and late (INa-L) sodium channels based on their phenotypes, including loss-, gain-, and coexistence of gain- and loss-of function mutations in INa-P, INa-L, respectively. We hope this review will provide a new comprehensive way to better understand the electrophysiological mechanisms underlying arrhythmias from cell to bedside, promoting the management of various arrhythmias in practice.

Get full access to this article

View all access and purchase options for this article.

References

1. Chen-Izu Y, Shaw RM, Pitt GS, Yarov-Yarovoy V, Sack JT, Abriel H, Aldrich RW, Belardinelli L, Cannell MB, Catterall WA, Chazin WJ, Chiamvimonvat N, Deschenes I, Grandi E, Hund TJ, Izu LT, Maier LS, Maltsev VA, Marionneau C, Mohler PJ, Rajamani S, Rasmusson RL, Sobie EA, Clancy CE, Bers DM. Na+ channel function, regulation, structure, trafficking and sequestration. J Physiol 2015; 593:1347–60
2. Kleber AG, Rudy Y. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol Rev 2004; 84:431–88
3. Attwell D, Cohen I, Eisner D, Ohba M, Ojeda C. The steady state TTX-sensitive (“window”) sodium current in cardiac Purkinje fibres. Pflugers Arch 1979; 379:137–42
4. Black JA, Waxman SG. Noncanonical roles of voltage-gated sodium channels. Neuron 2013; 80:280–91
5. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 2000; 26:13–25
6. Patlak JB, Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol 1985; 86:89–104
7. Maltsev VA, Undrovinas AI. A multi-modal composition of the late Na+ current in human ventricular cardiomyocytes. Cardiovasc Res 2006; 69:116–27
8. Undrovinas AI, Maltsev VA, Kyle JW, Silverman N, Sabbah HN. Gating of the late Na+ channel in normal and failing human myocardium. J Mol Cell Cardiol 2002; 34:1477–89
9. Fozzard HA. Cardiac sodium and calcium channels: a history of excitatory currents. Cardiovasc Res 2002; 55:1–8
10. Abriel H, Cabo C, Wehrens XH, Rivolta I, Motoike HK, Memmi M, Napolitano C, Priori SG, Kass RS. Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel. Circ Res 2001; 88:740–5
11. Alings M, Wilde A. Brugada" syndrome: clinical data and suggested pathophysiological mechanism. Circulation 1999; 99:666–73
12. Berecki G, Zegers JG, Bhuiyan ZA, Verkerk AO, Wilders R, van Ginneken AC. Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. J Physiol 2006; 570:237–50
13. Tan BH, Iturralde-Torres P, Medeiros-Domingo A, Nava S, Tester DJ, Valdivia CR, Tusie-Luna T, Ackerman MJ, Makielski JC. A novel C-terminal truncation SCN5A mutation from a patient with sick sinus syndrome, conduction disorder and ventricular tachycardia. Cardiovasc Res 2007; 76:409–17
14. Benson DW, Wang DW, Dyment M, Knilans TK, Fish FA, Strieper MJ, Rhodes TH, George AL. Jr., Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003; 112:1019–28
15. Chen LY, Ballew JD, Herron KJ, Rodeheffer RJ, Olson TM. A common polymorphism in SCN5A is associated with lone atrial fibrillation. Clin Pharmacol Ther 2007; 81:35–41
16. Benito B, Brugada R, Perich RM, Lizotte E, Cinca J, Mont L, Berruezo A, Tolosana JM, Freixa X, Brugada P, Brugada J. A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation. Heart Rhythm 2008; 5:1434–40
17. Hesse M, Kondo CS, Clark RB, Su L, Allen FL, Geary-Joo CT, Kunnathu S, Severson DL, Nygren A, Giles WR, Cross JC. Dilated cardiomyopathy is associated with reduced expression of the cardiac sodium channel Scn5a. Cardiovasc Res 2007; 75:498–509
18. Laurent G, Saal S, Amarouch MY, Beziau DM, Marsman RF, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Merot J, Turpault R, Coudiere Y, Charpentier F, Schott JJ, Loussouarn G, Wilde AA, Wolf JE, Baro I, Kyndt F, Probst V. Multifocal ectopic Purkinje-related premature contractions: a new SCN5A-related cardiac channelopathy. J Am Coll Cardiol 2012; 60:144–56
19. Saito YA, Strege PR, Tester DJ, Locke GR 3rd, Talley NJ, Bernard CE, Rae JL, Makielski JC, Ackerman MJ, Farrugia G. Sodium channel mutation in irritable bowel syndrome: evidence for an ion channelopathy. Am J Physiol Gastrointest Liver Physiol 2009; 296:G211–8
20. Pambrun T, Mercier A, Chatelier A, Patri S, Schott JJ, Le Scouarnec S, Chahine M, Degand B, Bois P. Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation. Heart Rhythm 2014; 11:1393–400
21. Noebels JL. Sodium channel gene expression and epilepsy. Novartis Found Symp 2002; 241:109–20 discussion 20–3, 226–32
22. Priest BT, Garcia ML, Middleton RE, Brochu RM, Clark S, Dai G, Dick IE, Felix JP, Liu CJ, Reiseter BS, Schmalhofer WA, Shao PP, Tang YS, Chou MZ, Kohler MG, Smith MM, Warren VA, Williams BS, Cohen CJ, Martin WJ, Meinke PT, Parsons WH, Wafford KA, Kaczorowski GJ. A disubstituted succinamide is a potent sodium channel blocker with efficacy in a rat pain model. Biochemistry 2004; 43:9866–76
23. Vanmolkot KR, Babini E, de Vries B, Stam AH, Freilinger T, Terwindt GM, Norris L, Haan J, Frants RR, Ramadan NM, Ferrari MD, Pusch M, van den Maagdenberg AM, Dichgans M. The novel p.L1649Q mutation in the SCN1A epilepsy gene is associated with familial hemiplegic migraine: genetic and functional studies. Mutation in brief #957. Hum Mutat 2007; 28:522
24. Shy D, Gillet L, Abriel H. Cardiac sodium channel NaV1.5 distribution in myocytes via interacting proteins: the multiple pool model. Biochim Biophys Acta 2013; 1833:886–94
25. Priori SG, Schwartz PJ, Napolitano C, Bloise R, Ronchetti E, Grillo M, Vicentini A, Spazzolini C, Nastoli J, Bottelli G, Folli R, Cappelletti D. Risk stratification in the long-QT syndrome. N Engl J Med 2003; 348:1866–74
26. Napolitano C, Priori SG, Schwartz PJ, Bloise R, Ronchetti E, Nastoli J, Bottelli G, Cerrone M, Leonardi S. Genetic testing in the long QT syndrome: development and validation of an efficient approach to genotyping in clinical practice. JAMA 2005; 294:2975–80
27. Wang Q, Shen J, Li Z, Timothy K, Vincent GM, Priori SG, Schwartz PJ, Keating MT. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 1995; 4:1603–7
28. Schwartz PJ, Priori SG, Spazzolini C, Moss AJ, Vincent GM, Napolitano C, Denjoy I, Guicheney P, Breithardt G, Keating MT, Towbin JA, Beggs AH, Brink P, Wilde AA, Toivonen L, Zareba W, Robinson JL, Timothy KW, Corfield V, Wattanasirichaigoon D, Corbett C, Haverkamp W, Schulze-Bahr E, Lehmann MH, Schwartz K, Coumel P, Bloise R. Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 2001; 103:89–95
29. Nunez L, Barana A, Amoros I, de la Fuente MG, Dolz-Gaiton P, Gomez R, Rodriguez-Garcia I, Mosquera I, Monserrat L, Delpon E, Caballero R, Castro-Beiras A, Tamargo J. p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient. Heart Rhythm 2013; 10:264–72
30. Musa H, Kline CF, Sturm AC, Murphy N, Adelman S, Wang C, Yan H, Johnson BL, Csepe TA, Kilic A, Higgins RS, Janssen PM, Fedorov VV, Weiss R, Salazar C, Hund TJ, Pitt GS, Mohler PJ. SCN5A variant that blocks fibroblast growth factor homologous factor regulation causes human arrhythmia. Proc Natl Acad Sci U S A 2015; 112:12528–33
31. Kauferstein S, Kiehne N, Peigneur S, Tytgat J, Bratzke H. Cardiac channelopathy causing sudden death as revealed by molecular autopsy. Int J Legal Med 2013; 127:145–51
32. Moreau A, Krahn AD, Gosselin-Badaroudine P, Klein GJ, Christe G, Vincent Y, Boutjdir M, Chahine M. Sodium overload due to a persistent current that attenuates the arrhythmogenic potential of a novel LQT3 mutation. Front Pharmacol 2013; 4:126
33. Swan H, Amarouch MY, Leinonen J, Marjamaa A, Kucera JP, Laitinen-Forsblom PJ, Lahtinen AM, Palotie A, Kontula K, Toivonen L, Abriel H, Widen E. Gain-of-function mutation of the SCN5A gene causes exercise-induced polymorphic ventricular arrhythmias. Circ Cardiovasc Genet 2014; 7:771–81
34. Calloe K, Broendberg AK, Christensen AH, Pedersen LN, Olesen MS, de Los Angeles Tejada M, Friis S, Thomsen MB, Bundgaard H, Jensen HK. Multifocal atrial and ventricular premature contractions with an increased risk of dilated cardiomyopathy caused by a Nav1.5 gain-of-function mutation (G213D). Int J Cardiol 2018; 257:160–7
35. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005; 2:507–17
36. Albert CM, Nam EG, Rimm EB, Jin HW, Hajjar RJ, Hunter DJ, MacRae CA, Ellinor PT. Cardiac sodium channel gene variants and sudden cardiac death in women. Circulation 2008; 117:16–23
37. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC, Hohnloser SH, Shimizu W, Schwartz PJ, Stanton M, Murray KT, Norris K, George AL Jr, Roden DM. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105:1943–8
38. Xiao YF, Ke Q, Wang SY, Yang Y, Wang GK, Morgan JP, Leaf A. Point mutations in alpha-subunit of human cardiac Na+ channels alter Na+ current kinetics. Biochem Biophys Res Commun 2001; 281:45–52
39. Marangoni S, Di Resta C, Rocchetti M, Barile L, Rizzetto R, Summa A, Severi S, Sommariva E, Pappone C, Ferrari M, Benedetti S, Zaza A. A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc Res 2011; 91:606–16
40. Yu R, Fan XF, Chen C, Liu ZH. Whole-exome sequencing identifies a novel mutation (R367G) in SCN5A to be associated with familial cardiac conduction disease. Mol Med Rep 2017; 16:410–4
41. Koval OM, Snyder JS, Wolf RM, Pavlovicz RE, Glynn P, Curran J, Leymaster ND, Dun W, Wright PJ, Cardona N, Qian L, Mitchell CC, Boyden PA, Binkley PF, Li C, Anderson ME, Mohler PJ, Hund TJ. Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 2012; 126:2084–94
42. Ortiz-Bonnin B, Rinne S, Moss R, Streit AK, Scharf M, Richter K, Stober A, Pfeufer A, Seemann G, Kaab S, Beckmann BM, Decher N. Electrophysiological characterization of a large set of novel variants in the SCN5A-gene: identification of novel LQTS3 and BrS mutations. Pflugers Arch 2016; 468:1375–87
43. Tester DJ, Valdivia C, Harris-Kerr C, Alders M, Salisbury BA, Wilde AA, Makielski JC, Ackerman MJ. Epidemiologic, molecular, and functional evidence suggest A572D-SCN5A should not be considered an independent LQT3-susceptibility mutation. Heart Rhythm 2010; 7:912–9
44. Iacoviello L, Bonaccio M, Di Castelnuovo A, Costanzo S, Rago L, De Curtis A, Assanelli D, Badilini F, Vaglio M, Persichillo M, Macfarlane PW, Cerletti C, Donati MB, de Gaetano G. Frontal plane T-wave axis orientation predicts coronary events: findings from the Moli-sani study. Ann Noninvasive Electrocardiol 2017; 264:51–7
45. Stocco FG, Evaristo E, Shah NR, Cheezum MK, Hainer J, Foster C, Nearing BD, Gervino E, Verrier RL. Marked exercise-induced T-wave heterogeneity in symptomatic diabetic patients with nonflow-limiting coronary artery stenosis. Ann Noninvasive Electrocardiol 2018; 23:e12503
46. Zygmunt AC, Eddlestone GT, Thomas GP, Nesterenko VV, Antzelevitch C. Larger late sodium conductance in M cells contributes to electrical heterogeneity in canine ventricle. Am J Physiol Heart Circ Physiol 2001; 281:H689–97
47. Schlotthauer K, Bers DM. Sarcoplasmic reticulum Ca(2+) release causes myocyte depolarization. Underlying mechanism and threshold for triggered action potentials. Circ Res 2000; 87:774–80
48. Katra RP, Laurita KR. Cellular mechanism of calcium-mediated triggered activity in the heart. Circ Res 2005; 96:535–42
49. Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 1986; 78:1185–92
50. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z. Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 2010; 7:1891–9
51. Aiba T, Hesketh GG, Liu T, Carlisle R, Villa-Abrille MC, O'Rourke B, Akar FG, Tomaselli GF. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 2010; 85:454–63
52. Shah M, Akar FG, Tomaselli GF. Molecular basis of arrhythmias. Circulation 2005; 112:2517–29
53. Song Y, Shryock JC, Wu L, Belardinelli L. Antagonism by ranolazine of the pro-arrhythmic effects of increasing late INa in guinea pig ventricular myocytes. J Cardiovasc Pharmacol 2004; 44:192–9
54. January CT, Riddle JM. Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 1989; 64:977–90
55. Fujiwara K, Tanaka H, Mani H, Nakagami T, Takamatsu T. Burst emergence of intracellular Ca2+ waves evokes arrhythmogenic oscillatory depolarization via the Na+-Ca2+ exchanger: simultaneous confocal recording of membrane potential and intracellular Ca2+ in the heart. Circ Res 2008; 103:509–18
56. Armoundas AA, Hobai IA, Tomaselli GF, Winslow RL, O'Rourke B. Role of sodium-calcium exchanger in modulating the action potential of ventricular myocytes from normal and failing hearts. Circ Res 2003; 93:46–53
57. Xie LH, Chen F, Karagueuzian HS, Weiss JN. Oxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling. Circ Res 2009; 104:79–86
58. Hoeker GS, Katra RP, Wilson LD, Plummer BN, Laurita KR. Spontaneous calcium release in tissue from the failing canine heart. Am J Physiol Heart Circ Physiol 2009; 297:H1235–42
59. Joung B, Zhang H, Shinohara T, Maruyama M, Han S, Kim D, Choi EK, On YK, Lin SF, Chen PS. Delayed afterdepolarization in intact canine sinoatrial node as a novel mechanism for atrial arrhythmia. J Cardiovasc Electrophysiol 2011; 22:448–54
60. Tyser RC, Miranda AM, Chen CM. Calcium handling precedes cardiac differentiation to initiate the first heartbeat. Elife 2016; 5:e17113
61. Mary-Rabine L, Hordof AJ, Danilo P Jr., Malm JR, Rosen MR. Mechanisms for impulse initiation in isolated human atrial fibers. Circ Res 1980; 47:267–77
62. Terrenoire C, Wang K, Tung KW, Chung WK, Pass RH, Lu JT, Jean JC, Omari A, Sampson KJ, Kotton DN, Keller G, Kass RS. Induced pluripotent stem cells used to reveal drug actions in a long QT syndrome family with complex genetics. J Gen Physiol 2013; 141:61–72
63. Shen C, Xu L, Yang Z, Zou Y, Hu K, Fan Z, Ge J, Sun A. A1180V of cardiac sodium channel gene (SCN5A): is it a risk factor for dilated cardiomyopathy or just a common variant in Han Chinese? Dis Markers 2013; 35:531
64. Hu RM, Tan BH, Orland KM, Valdivia CR, Peterson A, Pu J, Makielski JC. Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome. Am J Physiol Heart Circ Physiol 2013; 304:H994–h1001
65. Kato K, Makiyama T, Wu J, Ding WG, Kimura H, Naiki N, Ohno S, Itoh H, Nakanishi T, Matsuura H, Horie M. Cardiac channelopathies associated with infantile fatal ventricular arrhythmias: from the cradle to the bench. J Cardiovasc Electrophysiol 2014; 25:66–73
66. Beckermann TM, McLeod K, Murday V, Potet F, George AL Jr. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm 2014; 11:1446–53
67. Hu RM, Tan BH, Tester DJ, Song C, He Y, Dovat S, Peterson BZ, Ackerman MJ, Makielski JC. Arrhythmogenic biophysical phenotype for scn5a mutation s1787n depends upon splice variant background and intracellular acidosis. PLoS One 2015; 10:e0124921
68. Chen J, Makiyama T, Wuriyanghai Y, Ohno S, Sasaki K, Hayano M, Harita T, Nishiuchi S, Yuta Y, Ueyama T, Shimizu A, Horie M, Kimura T. Cardiac sodium channel mutation associated with epinephrine-induced QT prolongation and sinus node dysfunction. Heart Rhythm 2016; 13:289–98
69. Turker I, Makiyama T, Vatta M, Itoh H, Ueyama T, Shimizu A, Ai T, Horie M. A novel SCN5A mutation associated with drug induced Brugada type ECG. PLoS One 2016; 11:e0161872
70. Lieve KV, Verkerk AO, Podliesna S, van der Werf C, Tanck MW, Hofman N, van Bergen PF, Beekman L, Bezzina CR, Wilde AAM, Lodder EM. Gain-of-function mutation in SCN5A causes ventricular arrhythmias and early onset atrial fibrillation. Int J Cardiol 2017; 236:187–93
71. Kehl HG, Haverkamp W, Rellensmann G, Yelbuz TM, Krasemann T, Vogt J, Schulze-Bahr E. Images in cardiovascular medicine. Life-threatening neonatal arrhythmia: successful treatment and confirmation of clinically suspected extreme long QT-syndrome-3. Circulation 2004; 109:e205–6
72. Bankston JR, Yue M, Chung W, Spyres M, Pass RH, Silver E, Sampson KJ, Kass RS. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response. PLoS One 2007; 2:e1258
73. Tian XL, Yong SL, Wan X, Wu L, Chung MK, Tchou PJ, Rosenbaum DS, Van Wagoner DR, Kirsch GE, Wang Q. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 2004; 61:256–67
74. Yao L, Fan P, Jiang Z, Viatchenko-Karpinski S, Wu Y, Kornyeyev D, Hirakawa R, Budas GR, Rajamani S, Shryock JC, Belardinelli L. Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice. Am J Physiol Cell Physiol 2011; 301:C577–86
75. Schulze-Bahr E, Eckardt L, Breithardt G, Seidl K, Wichter T, Wolpert C, Borggrefe M, Haverkamp W. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 2003; 21:651–2
76. Mizusawa Y, Wilde AA. Brugada syndrome. Circ Arrhythm Electrophysiol 2012; 5:606–16
77. Sommariva E, Pappone C, Martinelli Boneschi F, Di Resta C, Rosaria Carbone M, Salvi E, Vergara P, Sala S, Cusi D, Ferrari M, Benedetti S. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet 2013; 21:911–7
78. Veltmann C, Barajas-Martinez H, Wolpert C, Borggrefe M, Schimpf R, Pfeiffer R, Caceres G, Burashnikov E, Antzelevitch C, Hu D. Further insights in the most common SCN5A mutation causing overlapping phenotype of long QT syndrome, Brugada syndrome, and conduction defect. J Am Heart Assoc 2016; 5:pii: e003379
79. Viswanathan PC, Balser JR. Inherited sodium channelopathies: a continuum of channel dysfunction. Trends Cardiovasc Med 2004; 14:28–35
80. Tarradas A, Selga E, Beltran-Alvarez P, Perez-Serra A, Riuro H, Pico F, Iglesias A, Campuzano O, Castro-Urda V, Fernandez-Lozano I, Perez GJ, Scornik FS, Brugada R. A novel missense mutation, I890T, in the pore region of cardiac sodium channel causes Brugada syndrome. PLoS One 2013; 8:e53220
81. Nakajima S, Makiyama T, Hanazawa K, Kaitani K, Amano M, Hayama Y, Onishi N, Tamaki Y, Miyake M, Tamura T, Kondo H, Motooka M, Izumi C, Nakagawa Y, Horie M. A novel SCN5A mutation demonstrating a variety of clinical phenotypes in familial sick sinus syndrome. Intern Med 2013; 52:1805–8
82. Calloe K, Refaat MM, Grubb S, Wojciak J, Campagna J, Thomsen NM, Nussbaum RL, Scheinman MM, Schmitt N. Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome. Circ Arrhythm Electrophysiol 2013; 6:177–84
83. Detta N, Frisso G, Zullo A, Sarubbi B, Cozzolino C, Romeo E, Wang DW, Calabro R, Salvatore F, George AL Jr. Novel deletion mutation in the cardiac sodium channel inactivation gate causes long QT syndrome. Int J Cardiol 2013; 165:362–5
84. Watanabe H, Ohkubo K, Watanabe I, Matsuyama TA, Ishibashi-Ueda H, Yagihara N, Shimizu W, Horie M, Minamino T, Makita N. SCN5A mutation associated with ventricular fibrillation, early repolarization, and concealed myocardial abnormalities. Int J Cardiol 2013; 165:e21–3
85. Zumhagen S, Veldkamp MW, Stallmeyer B, Baartscheer A, Eckardt L, Paul M, Remme CA, Bhuiyan ZA, Bezzina CR, Schulze-Bahr E. A heterozygous deletion mutation in the cardiac sodium channel gene SCN5A with loss- and gain-of-function characteristics manifests as isolated conduction disease, without signs of Brugada or long QT syndrome. PLoS One 2013; 8:e67963
86. Maury P, Moreau A, Hidden-Lucet F, Leenhardt A, Fressart V, Berthet M, Denjoy I, Bennamar N, Rollin A, Cardin C, Guicheney P, Chahine M. Novel SCN5A mutations in two families with "Brugada-like" ST elevation in the inferior leads and conduction disturbances. J Interv Card Electrophysiol 2013; 37:131–40
87. Parisi P, Oliva A, Coll Vidal M, Partemi S, Campuzano O, Iglesias A, Pisani D, Pascali VL, Paolino MC, Villa MP, Zara F, Tassinari CA, Striano P, Brugada R. Coexistence of epilepsy and Brugada syndrome in a family with SCN5A mutation. Epilepsy Res 2013; 105:415–8
88. Li N, Wang R, Hou C, Zhang Y, Teng S, Pu J. A heterozygous missense SCN5A mutation associated with early repolarization syndrome. Int J Mol Med 2013; 32:661–7
89. Kodama T, Serio A, Disertori M, Bronzetti G, Diegoli M, Narula N, Grasso M, Mazzola S, Arbustini E. Autosomal recessive paediatric sick sinus syndrome associated with novel compound mutations in SCN5A. Int J Cardiol 2013; 167:3078–80
90. Dolz-Gaiton P, Nunez M, Nunez L, Barana A, Amoros I, Matamoros M, Perez-Hernandez M, Gonzalez de la Fuente M, Alvarez-Lopez M, Macias-Ruiz R, Tercedor-Sanchez L, Jimenez-Jaimez J, Delpon E, Caballero R, Tamargo J. Functional characterization of a novel frameshift mutation in the C-terminus of the Nav1.5 channel underlying a Brugada syndrome with variable expression in a Spanish family. PLoS One 2013; 8:e81493
91. Detta N, Frisso G, Limongelli G, Marzullo M, Calabro R, Salvatore F. Genetic analysis in a family affected by sick sinus syndrome may reduce the sudden death risk in a young aspiring competitive athlete. Int J Cardiol 2014; 170:e63–5
92. Kanters JK, Yuan L, Hedley PL, Stoevring B, Jons C, Bloch Thomsen PE, Grunnet M, Christiansen M, Jespersen T. Flecainide provocation reveals concealed Brugada syndrome in a long QT syndrome family with a novel L1786Q mutation in SCN5A. Circ J 2014; 78:1136–43
93. Ziyadeh-Isleem A, Clatot J, Duchatelet S, Gandjbakhch E, Denjoy I, Hidden-Lucet F, Hatem S, Deschenes I, Coulombe A, Neyroud N, Guicheney P. A truncating SCN5A mutation combined with genetic variability causes sick sinus syndrome and early atrial fibrillation. Heart Rhythm 2014; 11:1015–23
94. Aiba T, Farinelli F, Kostecki G, Hesketh GG, Edwards D, Biswas S, Tung L, Tomaselli GF. A mutation causing Brugada syndrome identifies a mechanism for altered autonomic and oxidant regulation of cardiac sodium currents. Circ Cardiovasc Genet 2014; 7:249–56
95. Shy D, Gillet L, Ogrodnik J, Albesa M, Verkerk AO, Wolswinkel R, Rougier JS, Barc J, Essers MC, Syam N, Marsman RF, van Mil AM, Rotman S, Redon R, Bezzina CR, Remme CA, Abriel H. PDZ domain-binding motif regulates cardiomyocyte compartment-specific NaV1.5 channel expression and function. Circulation 2014; 130:147–60
96. Wang L, Meng X, Yuchi Z, Zhao Z, Xu D, Fedida D, Wang Z, Huang C. De novo mutation in the SCN5A gene associated with Brugada syndrome. Cell Physiol Biochem 2015; 36:2250–62
97. Zhu JF, Du LL, Tian Y, Du YM, Zhang L, Zhou T, Tian LI. Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome. Exp Ther Med 2015; 9:1639–45
98. Nakajima T, Kaneko Y, Saito A, Ota M, Iijima T, Kurabayashi M. Enhanced fast-inactivated state stability of cardiac sodium channels by a novel voltage sensor SCN5A mutation, R1632C, as a cause of atypical Brugada syndrome. Heart Rhythm 2015; 12:2296–304
99. Wang HG, Zhu W, Kanter RJ, Silva JR, Honeywell C, Gow RM, Pitt GS. A novel NaV1.5 voltage sensor mutation associated with severe atrial and ventricular arrhythmias. J Mol Cell Cardiol 2016; 92:52–62
100. Guo Q, Ren L, Chen X, Hou C, Chu J, Pu J, Zhang S. A novel mutation in the SCN5A gene contributes to arrhythmogenic characteristics of early repolarization syndrome. Int J Mol Med 2016; 37:727–33
101. Zeng Z, Xie Q, Huang Y, Zhao Y, Li W, Huang Z. p.D1690N sodium voltage-gated channel alpha subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Mol Med Rep 2016; 13:5216–22
102. Tan BY, Yong RY, Barajas-Martinez H, Dumaine R, Chew YX, Wasan PS, Ching CK, Ho KL, Gan LS, Morin N, Chong AP, Yap SH, Neo JL, Yap EP, Moochhala S, Chong DT, Chow W, Seow SC, Hu D, Uttamchandani M, Teo WS. A Brugada syndrome proband with compound heterozygote SCN5A mutations identified from a Chinese family in Singapore. Europace 2016; 18:897–904
103. Yang Z, Lu D, Zhang L, Hu J, Nie Z, Xie C, Qiu F, Cheng H, Yan Y. p.N1380del mutation in the pore-forming region of SCN5A gene is associated with cardiac conduction disturbance and ventricular tachycardia. Acta Biochim Biophys Sin 2017; 49:270–6
104. Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol 2017; 40:703–12
105. Hayano M, Makiyama T, Kamakura T, Watanabe H, Sasaki K, Funakoshi S, Wuriyanghai Y, Nishiuchi S, Harita T, Yamamoto Y, Kohjitani H, Hirose S, Yokoi F, Chen J, Baba O, Horie T, Chonabayashi K, Ohno S, Toyoda F, Yoshida Y, Ono K, Horie M, Kimura T. Development of a patient-derived induced pluripotent stem cell model for the investigation of SCN5A-D1275N-related cardiac sodium channelopathy. Circ J 2017; 81:1783–91
106. Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Perez GJ, Scornik FS, Brugada R, Mills NL. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 2018; 114:10–9
107. Huang H, Ding DB, Fan LL, Jin JY, Li JJ, Guo S, Chen YQ, Xiang R. Whole-exome sequencing identifies a Novel SCN5A mutation (C335R) in a Chinese family with arrhythmia. Cardiol Young 2018; 28:1–4
108. Smits JP, Koopmann TT, Wilders R, Veldkamp MW, Opthof T, Bhuiyan ZA, Mannens MM, Balser JR, Tan HL, Bezzina CR, Wilde AA. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol 2005; 38:969–81
109. Cordeiro JM, Barajas-Martinez H, Hong K, Burashnikov E, Pfeiffer R, Orsino AM, Wu YS, Hu D, Brugada J, Brugada P, Antzelevitch C, Dumaine R, Brugada R. Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation 2006; 114:2026–33
110. Yan GX, Antzelevitch C. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation 1999; 100:1660–6
111. Meregalli PG, Wilde AA, Tan HL. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more? Cardiovasc Res 2005; 67:367–78
112. Sieira J, Dendramis G, Brugada P. Pathogenesis and management of Brugada syndrome. Nat Rev Cardiol 2016; 13:744–56
113. Tan HL. Sodium channel variants in heart disease: expanding horizons. J Cardiovasc Electrophysiol 2006; 17:S151–s7
114. Trenor B, Cardona K, Saiz J, Noble D, Giles W. Cardiac action potential repolarization re-visited: early repolarization shows all-or-none behaviour. J Physiol 2017; 595:6599–12
115. Zimmer T, Surber R. SCN5A channelopathies–an update on mutations and mechanisms. Prog Biophys Mol Biol 2008; 98:120–36
116. Zeng Z, Zhou J, Hou Y, Liang X, Zhang Z, Xu X, Xie Q, Li W, Huang Z. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome. PLoS One 2013; 8:e78382
117. Wang DW, Desai RR, Crotti L, Arnestad M, Insolia R, Pedrazzini M, Ferrandi C, Vege A, Rognum T, Schwartz PJ, George AL Jr. Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 2007; 115:368–76
118. Surber R, Hensellek S, Prochnau D, Werner GS, Benndorf K, Figulla HR, Zimmer T. Combination of cardiac conduction disease and long QT syndrome caused by mutation T1620K in the cardiac sodium channel. Cardiovasc Res 2008; 77:740–8
119. Walzik S, Schroeter A, Benndorf K, Zimmer T. Alternative splicing of the cardiac sodium channel creates multiple variants of mutant T1620K channels. PLoS One 2011; 6:e19188
120. Bezzina CR, Rook MB, Groenewegen WA, Herfst LJ, van der Wal AC, Lam J, Jongsma HJ, Wilde AA, Mannens MM. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003; 92:159–68
121. Niu DM, Hwang B, Hwang HW, Wang NH, Wu JY, Lee PC, Chien JC, Shieh RC, Chen YT. A common SCN5A polymorphism attenuates a severe cardiac phenotype caused by a nonsense SCN5A mutation in a Chinese family with an inherited cardiac conduction defect. J Med Genet 2006; 43:817–21
122. Tan HL, Bink-Boelkens MT, Bezzina CR, Viswanathan PC, Beaufort-Krol GC, van Tintelen PJ, van den Berg MP, Wilde AA, Balser JR. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 2001; 409:1043–7
123. Zhang ZS, Tranquillo J, Neplioueva V, Bursac N, Grant AO. Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am J Physiol Heart Circ Physiol 2007; 292:H399–407
124. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Brignole M, Giordano U, Giovannini T, Menozzi C, Bloise R, Crotti L, Terreni L, Schwartz PJ. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 2000; 102:2509–15
125. Aoki H, Nakamura Y, Ohno S, Makiyama T, Horie M. Cardiac conduction defects and Brugada syndrome: a family with overlap syndrome carrying a nonsense SCN5A mutation. J Arrhythm 2017; 33:35–9
126. Lin L, Takahashi-Igari M, Kato Y, Nozaki Y, Obata M, Hamada H, Horigome H. Prenatal diagnosis of atrioventricular block and QT interval prolongation by fetal magnetocardiography in a fetus with trisomy 18 and SCN5A R1193Q variant. Case Rep Pediatr 2017; 2017:6570465
127. Sun A, Xu L, Wang S, Wang K, Huang W, Wang Y, Zou Y, Ge J. SCN5A R1193Q polymorphism associated with progressive cardiac conduction defects and long QT syndrome in a Chinese family. Case Rep Pediatr 2008; 45:127–8
128. Sumitomo N. E1784K mutation in SCN5A and overlap syndrome. Circ J 2014; 78:1839–40
129. Wei J, Wang DW, Alings M, Fish F, Wathen M, Roden DM, George AL Jr. Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel. Circulation 1999; 99:3165–71

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: May 27, 2018
Issue published: June 2018

Keywords

  1. Nav1.5
  2. SCN5A
  3. gain-of-function
  4. loss-of-function
  5. INa-P
  6. INa-L

Rights and permissions

© 2018 by the Society for Experimental Biology and Medicine.
PubMed: 29806494

Authors

Affiliations

Dan Han
Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, P.R. China
Hui Tan
Department of Respiratory Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, P.R. China
Chaofeng Sun
Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, P.R. China
Guoliang Li
Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi’an 710061, P.R. China

Notes

Chaofeng Sun. Email: [email protected]; Guoliang Li. Email: [email protected]

Authors’ Contributions

Dan Han wrote the draft. Guoliang Li, Hui Tan and Chaofeng Sun revised it.

Metrics and citations

Metrics

Journals metrics

This article was published in Experimental Biology and Medicine.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 774

*Article usage tracking started in December 2016


Altmetric

See the impact this article is making through the number of times it’s been read, and the Altmetric Score.
Learn more about the Altmetric Scores



Articles citing this one

Receive email alerts when this article is cited

Web of Science: 34 view articles Opens in new tab

Crossref: 37

  1. CYP2J deficiency leads to cardiac injury and presents dual regulatory ...
    Go to citation Crossref Google Scholar
  2. Recent Advances in Computer-Aided Structure-Based Drug Design on Ion C...
    Go to citation Crossref Google Scholar
  3. Mechanisms of expression, trafficking and biophysical activity regulat...
    Go to citation Crossref Google Scholar
  4. Advances in Ion Channel, Non-Desmosomal Variants and Autophagic Mechan...
    Go to citation Crossref Google Scholar
  5. Detoxification mechanisms of ginseng to aconite: A review
    Go to citation Crossref Google Scholar
  6. Inhibition of late sodium current via PI3K/Akt signaling prevents cell...
    Go to citation Crossref Google Scholar
  7. Cell-Free Synthesis and Electrophysiological Analysis of Multipass Vol...
    Go to citation Crossref Google Scholar
  8. Human macrophages directly modulate iPSC-derived cardiomyocytes at hea...
    Go to citation Crossref Google Scholar
  9. Functional evaluation of the tachycardia patient‐derived iPSC cardiomy...
    Go to citation Crossref Google Scholar
  10. Venomous Peptides as Cardiac Ion Channel’s Modulators
    Go to citation Crossref Google Scholar
  11. The Genetics and Epigenetics of Ventricular Arrhythmias in Patients Wi...
    Go to citation Crossref Google Scholar
  12. Colchicine prevents ventricular arrhythmias vulnerability in diet-indu...
    Go to citation Crossref Google Scholar
  13. Rare sudden unexpected death in epilepsy SCN5A ...
    Go to citation Crossref Google Scholar
  14. Reentry in cardiac ventricular epicardial tissue due to SCN5A L812Q ge...
    Go to citation Crossref Google Scholar
  15. Absolute Quantification of Nav1.5 Expression by Targeted Mass Spectrom...
    Go to citation Crossref Google Scholar
  16. Role of ranolazine in heart failure: From cellular to clinic perspecti...
    Go to citation Crossref Google Scholar
  17. Discovering the Triad between Nav1.5, Breast Cancer, and the Immune Sy...
    Go to citation Crossref Google Scholar
  18. Prevalence and Risk Factors of QTc Prolongation During Pregnancy
    Go to citation Crossref Google Scholar
  19. Digenic heterozygous mutations of KCNH2 and SCN5A induced young and ea...
    Go to citation Crossref Google Scholar
  20. Reliable identification of cardiac conduction abnormalities in drug di...
    Go to citation Crossref Google Scholar
  21. Contributions of S- and R-citalopram to the citalopram-induced modulat...
    Go to citation Crossref Google Scholar
  22. Coexistence of Two Rare Genetic Variants in Canonical and Non-canonica...
    Go to citation Crossref Google Scholar
  23. Ca 2+ mishandling in heart failure: Potent...
    Go to citation Crossref Google Scholar
  24. Atrial Fibrillation in Inherited Channelopathies
    Go to citation Crossref Google Scholar
  25. Computational Study of SCN5A L812Q Gene Mutation in Epicardial Cells
    Go to citation Crossref Google Scholar
  26. Structural basis of cytoplasmic NaV1.5 and NaV1.4 regulation
    Go to citation Crossref Google Scholar
  27. In vitro discovery of novel prokaryotic ion channel candidates for ant...
    Go to citation Crossref Google Scholar
  28. Life Cycle of the Cardiac Voltage-Gated Sodium Channel NaV1.5
    Go to citation Crossref Google Scholar
  29. Nav channels in cancers: Non-classical roles
    Go to citation Crossref Google Scholar
  30. NAD+ Metabolism as an Emerging Therapeutic Target for Cardiovascular D...
    Go to citation Crossref Google Scholar
  31. Identification of Target Genes of Antiarrhythmic Traditional Chinese M...
    Go to citation Crossref Google Scholar
  32. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeti...
    Go to citation Crossref Google Scholar
  33. Acquired long QT syndrome in chronic kidney disease patients
    Go to citation Crossref Google Scholar
  34. Voltage-gated Sodium Channels and Blockers: An Overview and Where Will...
    Go to citation Crossref Google Scholar
  35. Dysfunctional Cav1.2 channel in Timothy syndrome, from cell to bedside
    Go to citation Crossref Google ScholarPub Med
  36. Amiodarone-induced life-threatening torsade de pointes in an end-stage...
    Go to citation Crossref Google Scholar
  37. The role of mexiletine in the management of long QT syndrome
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:

SEBM members can access this journal content using society membership credentials.

SEBM members can access this journal content using society membership credentials.


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub

Full Text

View Full Text