This article explains a decision rule that uses Bayesian posterior distributions as the basis for accepting or rejecting null values of parameters. This decision rule focuses on the range of plausible values indicated by the highest density interval of the posterior distribution and the relation between this range and a region of practical equivalence (ROPE) around the null value. The article also discusses considerations for setting the limits of a ROPE and emphasizes that analogous considerations apply to setting the decision thresholds for p values and Bayes factors.

Adjerid, I., Kelley, K. (2018). Big data in psychology: A framework for research advancement. American Psychologist. Advance online publication. doi:10.1037/amp0000190
Google Scholar
Bayes, T., Price, R. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. Philosophical Transactions, 53, 370418. doi:10.1098/rstl.1763.0053
Google Scholar
Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., . . . Johnson, V. E (2018). Redefine statistical significance. Nature Human Behavior, 2, 610. doi:10.1038/s41562-017-0189-z
Google Scholar
Bertotti, B., Iess, L., Tortora, P. (2003). A test of general relativity using radio links with the Cassini spacecraft. Nature, 425, 374376. doi:10.1038/nature01997
Google Scholar
Carlin, B. P., Louis, T. A. (2009). Bayesian methods for data analysis (3rd ed.). Boca Raton, FL: CRC Press.
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.
Google Scholar
Cox, D. R. (2006). Principles of statistical inference. Cambridge, England: Cambridge University Press.
Google Scholar
Cumming, G. (2014). The new statistics: Why and how. Psychological Science, 25, 729.
Google Scholar | SAGE Journals | ISI
Denwood, M. J. (2016). runjags: An R package providing interface utilities, model templates, parallel computing methods and additional distributions for MCMC models in JAGS. Journal of Statistical Software, 71(9), 125. doi:10.18637/jss.v071.i09
Google Scholar
Dienes, Z. (2016). How Bayes factors change scientific practice. Journal of Mathematical Psychology, 72, 7889. doi:10.1016/j.jmp.2015.10.003
Google Scholar | ISI
Freedman, L. S., Lowe, D., Macaskill, P. (1984). Stopping rules for clinical trials incorporating clinical opinion. Biometrics, 40, 575586.
Google Scholar | ISI
Hobbs, B. P., Carlin, B. P. (2008). Practical Bayesian design and analysis for drug and device clinical trials. Journal of Biopharmaceutical Statistics, 18, 5480.
Google Scholar
Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, England: Oxford University Press.
Google Scholar
Kappel, F., Fisher-Fleming, R., Hogue, E. J. (1995). Ideal pear sensory attributes and fruit characteristics. HortScience, 30, 988993.
Google Scholar
Kappel, F., Fisher-Fleming, R., Hogue, E. J. (1996). Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience, 31, 443446.
Google Scholar
Kass, R. E., Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773795.
Google Scholar | ISI
Kruschke, J. K. (2010). Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science, 1, 658676. doi:10.1002/wcs.72
Google Scholar | ISI
Kruschke, J. K. (2011a). Bayesian assessment of null values via parameter estimation and model comparison. Perspectives on Psychological Science, 6, 299312.
Google Scholar | SAGE Journals | ISI
Kruschke, J. K. (2011b). Doing Bayesian data analysis: A tutorial with R and BUGS (1st ed.). Burlington, MA: Academic Press.
Google Scholar
Kruschke, J. K. (2013). Bayesian estimation supersedes the t test. Journal of Experimental Psychology: General, 142, 573603. doi:10.1037/a0029146
Google Scholar
Kruschke, J. K. (2015). Doing Bayesian data analysis: A tu-torial with R, JAGS, and Stan (2nd ed.). Burlington, MA: Academic Press.
Google Scholar
Kruschke, J. K., Aguinis, H., Joo, H. (2012). The time has come: Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722752. doi:10.1177/1094428112457829
Google Scholar | SAGE Journals | ISI
Kruschke, J. K., Liddell, T. M. (2018a). Bayesian data analysis for newcomers. Psychonomic Bulletin & Review, 25, 155177. doi:10.3758/s13423-017-1272-1
Google Scholar
Kruschke, J. K., Liddell, T. M. (2018b). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25, 178206. doi:10.3758/s13423-016-1221-4
Google Scholar
Kruschke, J. K., Vanpaemel, W. (2015). Bayesian estimation in hierarchical models. In Busemeyer, J. R., Wang, J., Townsend, J. T., Eidels, A. (Eds.), The Oxford handbook of computational and mathematical psychology (pp. 279299). Oxford, England: Oxford University Press.
Google Scholar
Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses. European Journal of Social Psychology, 44, 701710.
Google Scholar
Lakens, D. (2017). Equivalence tests: A practical primer for t tests, correlations, and meta-analyses. Social Psychological & Personality Science, 8, 355362.
Google Scholar
Lakens, D., Adolfi, F., Albers, C., Anvari, F., Apps, M., Argamon, S., . . . Zwaan, R. (2017). Justify your alpha. Retrieved from https://psyarxiv.com/9s3y6
Google Scholar
Lazarus, R. S., Eriksen, C. W. (1952). Effects of failure stress upon skilled performance. Journal of Experimental Psychology, 43, 100105. doi:10.1037/h0056614
Google Scholar
Lesaffre, E. (2008). Superiority, equivalence, and non-inferiority trials. Bulletin of the NYU Hospital for Joint Diseases, 66, 150154.
Google Scholar
Little, T. A. (2015). Equivalence testing for comparability. BioPharm International, 28(2), 4548.
Google Scholar
Maxwell, S. E. (2004). The persistence of underpowered studies in psychological research: Causes, consequences, and remedies. Psychological Methods, 9, 147163.
Google Scholar | ISI
Meehl, P. E. (1967). Theory-testing in psychology and physics: A methodological paradox. Philosophy of Science, 34, 103115.
Google Scholar | ISI
Meehl, P. E. (1997). The problem is epistemology, not statistics: Replace significance tests by confidence intervals and quantify accuracy of risky numerical predictions. In Harlow, L. L., Mulaik, S. A., Steiger, J. H. (Eds.), What if there were no significance tests? (pp. 395425). Mahwah, NJ: Erlbaum.
Google Scholar
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Hornik, K., Leisch, F., Zeileis, A. (Eds.), Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003). Retrieved from https://www.r-project.org/conferences/DSC-2003/Proceedings/Plummer.pdf
Google Scholar
Plummer, M. (2017). JAGS Version 4.3.0 user manual. Retrieved from https://sourceforge.net/projects/mcmc-jags/files/Manuals/4.x/jagsusermanual.pdf/download
Google Scholar
Rindermann, H., Thompson, J. (2011). Cognitive capitalism: The effect of cognitive ability on wealth, as mediated through scientific achievement and economic freedom. Psychological Science, 22, 754763.
Google Scholar | SAGE Journals | ISI
Rouder, J. N., Morey, R. D., Province, J. M. (2013). A Bayes factor meta-analysis of recent extrasensory perception experiments: Comment on Storm, Tressoldi, and Di Risio (2010). Psychological Bulletin, 139, 241247.
Google Scholar
Schiff, L. I. (1960). On experimental tests of the general theory of relativity. American Journal of Physics, 28, 340343. doi:10.1119/1.1935800
Google Scholar
Schönbrodt, F. D., Wagenmakers, E.-J., Zehetleitner, M., Perugini, M. (2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22, 322339.
Google Scholar
Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. Journal of Pharmacokinetics and Biopharmaceutics, 15, 657680.
Google Scholar
Serlin, R. C., Lapsley, D. K. (1985). Rationality in psychological research: The good-enough principle. American Psychologist, 40, 7383.
Google Scholar | ISI
Serlin, R. C., Lapsley, D. K. (1993). Rational appraisal of psychological research and the good-enough principle. In Keren, G., Lewis, C. (Eds.), A handbook for data analysis in the behavioral sciences: Methodological issues (pp. 199228). Mahwah, NJ: Erlbaum.
Google Scholar
Spiegelhalter, D. J., Freedman, L. S., Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society: Series A, 157, 357416.
Google Scholar | ISI
U.S. Food and Drug Administration, Center for Drug Evaluation and Research . (2001). Guidance for industry: Statistical approaches to establishing bioequiva-lence. Retrieved from https://www.fda.gov/downloads/drugs/guidances/ucm070244.pdf
Google Scholar
U.S. Food and Drug Administration, Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research . (2016). Non-inferiority clinical trials to establish effectiveness: Guidance for industry. Retrieved from https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm202140.pdf
Google Scholar
U.S. Food and Drug Administration, Center for Veterinary Medicine . (2016). Guidance for industry: Bioequivalence: Blood level bioequivalence study VICH GL52. Re-trieved from https://www.fda.gov/downloads/AnimalVeterinary/GuidanceComplianceEnforcement/GuidanceforIndustry/UCM415697.pdf
Google Scholar
Walker, E., Nowacki, A. S. (2011). Understanding equivalence and noninferiority testing. Journal of General Internal Medicine, 26, 192196.
Google Scholar | ISI
Wasserstein, R. L., Lazar, N. A. (2016). The ASA’s statement on p-values: Context, process, and purpose. The American Statistician, 70, 129133. doi:10.1080/00031305.2016.1154108
Google Scholar
Westlake, W. J. (1976). Symmetrical confidence intervals for bioequivalence trials. Biometrics, 32, 741744.
Google Scholar | ISI
Westlake, W. J. (1981). Response to bioequivalence testing—a need to rethink. Biometrics, 37, 591593.
Google Scholar | ISI
Wiens, B. L. (2002). Choosing an equivalence limit for noninferiority or equivalence studies. Controlled Clinical Trials, 23, 214.
Google Scholar
Will, C. M. (2014). The confrontation between general relativity and experiment. Living Reviews in Relativity, 17, Article 4. doi:10.12942/lrr-2014-4
Google Scholar
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

AMP-article-ppv for $37.50

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top