In this article, the authors suggest a profile-likelihood approach for estimating complex models by maximum likelihood (ML) using standard software and minimal programming. The method works whenever setting some of the parameters of the model to known constants turns the model into a standard model. An important class of models that can be estimated this way is generalized linear mixed models with factor structures. Such models are useful in educational research, for example, for estimation of value-added teacher or school effects with persistence parameters and for analysis of large-scale assessment data using multilevel item response models with discrimination parameters. The authors describe the profile-likelihood approach, implement it in the R software, and apply the method to longitudinal data and binary item response data. Simulation studies and comparison with gllamm show that the profile-likelihood method performs well in both types of applications. The authors also briefly discuss other types of models that can be estimated using the profile-likelihood idea.

Adams, R., Wilson, M., Wu, M. (1997). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22, 4776.
Google Scholar | SAGE Journals
Bates, D., Maechler, M. (2009). lme4: Linear mixed-effects models using S4 classes R package version 0.999375-31. Retrieved from http://CRAN.Rproject.org/package=lme4
Google Scholar
Berkhof, J., Snijders, T. A. B. (2001). Variance component testing in multilevel models. Journal of Educational and Behavioral Statistics, 26, 132152.
Google Scholar | SAGE Journals
Browne, W. J. (2009). MCMC estimation in MLwiN. Bristol, UK: Centre for Multilevel Modelling.
Google Scholar
Browne, W. J., Draper, D. (2006). A comparison of Bayesian and likelihood methods for fitting multilevel models. Bayesian Analysis, 1, 473514.
Google Scholar | Crossref
Browne, W. J., Goldstein, H., Rasbash, J. (2001). Multiple membership multiple classification (MMMC) models. Statistical Modelling, 1, 103124.
Google Scholar | SAGE Journals
Byrd, R. H., Lu, P., Nocedal, J., Zhu, C. (1995). A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific Computing, 16, 11901208.
Google Scholar | Crossref
Cai, L., Yang, J. S., Hansen, M. P. (2011). Generalized full-information item bifactor analysis. Psychological Methods, 16, 221248.
Google Scholar | Crossref | Medline
Cho, S.-J., Rabe-Hesketh, S. (2011). Alternating imputation posterior estimation of models with crossed random effects. Computational Statistics and Data Analysis, 55, 1225.
Google Scholar | Crossref
De Boeck, P., Bakker, M., Zwitser, R., Nivard, M., Hofman, A., Tuerlinckx, F., Partchev, I. (2011). The estimation of item response models with the lmer function from the lme4 package in R. Journal of Statistical Software, 39, 128.
Google Scholar | Crossref
De Boeck, P., Wilson, M. (2004). Explanatory item response models: A generalized and nonlinear approach. New York, NY: Springer.
Google Scholar | Crossref
Doolaard, S. (1999). Schools in change or school in chain. Enschede, Netherlands: University of Twente.
Google Scholar
Doran, H., Bates, D., Bliese, P., Dowling, M. (2007). Estimating the multilevel Rasch model: With the lme4 package. Journal of Statistical Software, 20, 118.
Google Scholar | Crossref
Embretson, S. (1999). Generating items during testing: Psychometric issues and models. Psychometrika, 64, 407433.
Google Scholar | Crossref
Fisher, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.
Google Scholar | Crossref
Fox, J. P. (2007). Multilevel IRT modeling in practice with the package mlirt. Journal of Statistical Software, 20, 116.
Google Scholar | Crossref
Fox, J. P., Glas, A. C. (2001). Bayesian estimation of a multilevel IRT model using Gibbs sampling. Psychometrika, 66, 271288.
Google Scholar | Crossref
Gibbons, R. D., Hedeker, D. (1992). Full-information item bi-factor analysis. Psychometrika, 57, 423436.
Google Scholar | Crossref
Goldstein, H. (1987). Multilevel covariance component models. Biometrika, 74, 430431.
Google Scholar | Crossref
Goldstein, H. (2003). Multilevel statistical models. 3rd ed. London, England: Arnold.
Google Scholar
Goldstein, H., Bonnet, G., Rocher, T. (2007). Multilevel structural equation models for the analysis of comparative data on educational performance. Journal of Educational and Behavioral Statistics, 32, 252286.
Google Scholar | SAGE Journals
Goldstein, H., Browne, J. W. (2005). Multilevel factor analysis models for continuous and discrete data. In Maydeu-Olivares, A., McArdle, J. J. (Eds.),. In Contemporary psychometrics: A festschrift for Roderick P. McDonald (pp. 453475). Mahwah, New Jersey:Lawrence Erlbaum
Google Scholar
Goldstein, H., Burgess, S., McConnell, B. (2007). Modelling the effect of pupil mobility on school differences in educational achievement. Journal of the Royal Statistical Society Series A, 170, 841954.
Google Scholar | Crossref
Greenland, S. (1984). A counterexample to the test-based principle of setting confidence limits. American Journal of Epidemiology, 120, 47.
Google Scholar | Crossref | Medline
Halperin, M. (1977). Estimability and estimation in case-referent studies. Letters to the Editor. American Journal of Epidemiology, 105, 496498.
Google Scholar | Crossref | Medline
Hill, P., Goldstein, H. (1998). Multilevel modeling of educational data with cross-classification and missing identification for units. Journal of Educational and Behavioral Statistics, 23, 117128.
Google Scholar | SAGE Journals
Jeon, M., Rijmen, F., Rabe-Hesketh, S. (in press). Modeling differential item functioning using a generalized multiple-group bifactor model. Journal of Educational and Behavioral Statistics.
Google Scholar
Joe, H. (2008). Accuracy of Laplace approximation for discrete response mixed models. Computational Statistics and Data Analysis, 52, 50665074.
Google Scholar | Crossref
Kamata, A. (2001). Item analysis by the hierarchical generalized linear model. Applied Psychological Measurement, 38, 7993.
Google Scholar
Li, D., Oranje, A., Jiang, Y. (2009). On the estimation of hierarchical latent regression models for large-scale assessments. Journal of Educational and Behavioral Statistics, 34, 433463.
Google Scholar | SAGE Journals
Lockwood, J., McCaffrey, D., Mariano, L., Setodji, C. (2007). Bayesian methods for scalable multivariate value-added assessment. Journal of Educational and Behavioral Statistics, 32, 125150.
Google Scholar | SAGE Journals
Maas, C. M., Snijders, T. A. B. (2003). The multilevel approach to repeated measures for complete and incomplete data. Quality & Quantity, 37, 7189.
Google Scholar | Crossref
Maier, K. S. (2001). A Rasch hierarchical measurement model. Journal of Educational and Behavioral Statistics, 26, 307330.
Google Scholar | SAGE Journals
Mariano, L., McCaffrey, D., Lockwood, J. (2010). A model for teacher effects from longitudinal data without assuming vertical scaling. Journal of Educational and Behavioral Statistics, 35, 253279.
Google Scholar | SAGE Journals
McCaffrey, D. F., Lockwood, J. R., Koretz, D., Louis, T. A., Hamilton, L. (2004). Models for value-added modeling of teacher effects. Journal of Educational and Behavioral Statistics, 29, 67101.
Google Scholar | SAGE Journals
Mellenbergh, J. G. (1994). Generalized linear item response theory. Psychological Bulletin, 115, 300307.
Google Scholar | Crossref
Meredith, W., Tisak, J. (1988). Latent curve analysis. Psychometrika, 55, 107122.
Google Scholar | Crossref
Miettinen, O. (1976). Estimability and estimation in case-referent studies. American Journal of Epidemiology, 103, 226235.
Google Scholar | Crossref | Medline
Muthén, L., Muthén, B. (2008). Mplus user’s guide. Los Angeles, CA: Muthen & Muthen.
Google Scholar
Natarajan, R., Kass, R. E. (2000). Reference Bayesian methods for generalized linear mixed models. Journal of the American Statistical Association, 95, 227237.
Google Scholar | Crossref
Parke, R. W (1986). Pseudo maximum likelihood estimation: The asymptotic distribution. Annals of Statistics, 14, 355357.
Google Scholar | Crossref
Pawitan, Y. (2001). In all likelihood: Statistical modeling and inference using likelihood. New York, NY: Oxford.
Google Scholar
Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2004). Generalized multilevel structural equation modelling. Psychometrika, 69, 167190.
Google Scholar | Crossref
Rabe-Hesketh, S., Skrondal, A., Pickles, A. (2005). Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects. Journal of Econometrics, 128, 301323.
Google Scholar | Crossref
Raudenbush, S. W. (1993). A crossed random effects model for unbalanced data with applications in cross-sectional and longitudinal research. Journal of Educational Statistics, 18, 321349.
Google Scholar | SAGE Journals
Raudenbush, S. W., Bryk, A. (2002). Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA: Sage.
Google Scholar
Raudenbush, S. W., Rowan, B., Kang, S. J. (1991). A multilevel, multivariate model for studying school climate with estimation via the EM algorithm and application to U.S. high-school data. Journal of Educational Statistics, 16, 295330.
Google Scholar | SAGE Journals
Raudenbush, S. W., Sampson, R. (1999). Ecometrics: Toward a science of assessing ecological settings, with application to the systematic social observation of neighborhoods. Sociological Methodology, 29, 141.
Google Scholar | SAGE Journals
Skrondal, A., Rabe-Hesketh, S. W. (2004). Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models. Boca Raton, FL: Chapman & Hall/CRC.
Google Scholar | Crossref
Skrondal, A., Rabe-Hesketh, S. W. (2007). Latent variable modelling: A survey. Scandinavian Journal of Statistics, 34, 712745.
Google Scholar | Crossref
Spiegelhalter, D. J., Thomas, A., Best, N. G., Gilks, W. R. (1996). BUGS 0.5 Bayesian analysis using Gibbs sampling. Manual (version ii). Cambridge, UK: MRC-Biostatistics Unit. Retrieved from http://www.mrc-bsu.cam.ac.uk/bugs/documentation/contents.shtml
Google Scholar
StataCorp . (2009). Stata statistical software: Release 11. College Station, TX: Author.
Google Scholar
Swaminathan, H., Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361370.
Google Scholar | Crossref
Vermunt, J. (2007). Multilevel latent variable modeling: An application in education testing. Austrian Journal of Statistics, 38, 285299.
Google Scholar
Wolfinger, R. D. (1999). Fitting non-linear mixed models with the new NLMIXED procedure (Technical Report). Cary, NC: SAS Institute.
Google Scholar
Zheng, X., Rabe-Hesketh, S. (2007). Estimating parameters of dichotomous and ordinal item response models with gllamm. The Stata Journal, 7, 313333.
Google Scholar | SAGE Journals
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

JEB-article-ppv for $37.50

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top