In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general framework for defining effect sizes in multiple baseline designs that are directly comparable to the standardized mean difference from a between-subjects randomized experiment. The target, design-comparable effect size parameter can be estimated using restricted maximum likelihood together with a small sample correction analogous to Hedges’s g. The approach is demonstrated using hierarchical linear models that include baseline time trends and treatment-by-time interactions. A simulation compares the performance of the proposed estimator to that of an alternative, and an application illustrates the model-fitting process.

Algina, J., Keselman, H. J. (2003). Approximate confidence intervals for effect sizes. Educational and Psychological Measurement, 63, 537553. doi:10.1177/0013164403256358
Google Scholar | SAGE Journals
Bailey, J. S., Burch, M. R. (2002). Research methods in applied behavior analysis. Thousand Oaks, CA: Sage.
Google Scholar | Crossref
Baldwin, S. A., Fellingham, G. W. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151164. doi:10.1037/a0030642
Google Scholar | Crossref | Medline
Beretvas, S. N., Chung, H. (2008). A review of meta-analyses of single-subject experimental designs: Methodological issues and practice. Evidence-Based Communication Assessment and Intervention, 2, 129141. doi:10.1080/17489530802446302
Google Scholar | Crossref
Borckardt, J. J., Nash, M. R., Murphy, M. D., Moore, M., Shaw, D., O’Neil, P. (2008). Clinical practice as natural laboratory for psychotherapy research: A guide to case-based time-series analysis. The American Psychologist, 63, 7795. doi:10.1037/0003-066X.63.2.77
Google Scholar | Crossref | Medline
Busse, R. T., Kratochwill, T. R., Elliott, S. N. (1995). Meta-analysis for single-case consultation outcomes: Applications to research and practice. Journal of School Psychology, 33, 269285.
Google Scholar | Crossref
Center, B. A., Skiba, R. J., Casey, A. (1985). A methodology for the quantitative synthesis of intra-subject design research. The Journal of Special Education, 19, 387400.
Google Scholar | SAGE Journals
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78, 685709. doi:10.1007/s11336-013-9328-2
Google Scholar | Crossref | Medline
Cooper, H. M. (2009). Hypotheses and problems in research synthesis. In Cooper, H. M., Hedges, L. V, Valentine, J. (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 1935). New York, NY: Russell Sage Foundation.
Google Scholar
Cumming, G., Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61, 532574. doi:10.1177/0013164401614002
Google Scholar | SAGE Journals
Efron, B., Tibshirani, R. J. (1998). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall/CRC.
Google Scholar
Ferron, J. M., Bell, B. A., Hess, M. R., Rendina-Gobioff, G., Hibbard, S. T. (2009). Making treatment effect inferences from multiple-baseline data: The utility of multilevel modeling approaches. Behavior Research Methods, 41, 372384. doi:10.3758/BRM.41.2.372
Google Scholar | Crossref | Medline
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515533.
Google Scholar | Crossref
Gorsuch, R. L. (1983). Three methods for analyzing limited time-series (N of 1) data. Behavioral Assessment, 5, 141154.
Google Scholar
Gottman, J. M. (1981). Time-series analysis: A comprehensive introduction for social scientists. Cambridge, England: Cambridge University Press.
Google Scholar
Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics. 6, 107128.
Google Scholar | SAGE Journals
Hedges, L. V. (2007). Effect sizes in cluster-randomized designs. Journal of Educational and Behavioral Statistics, 32, 341370. doi:10.3102/1076998606298043
Google Scholar | SAGE Journals
Hedges, L. V. (2011). Effect sizes in three-level cluster-randomized experiments. Journal of Educational and Behavioral Statistics. 36, 346380. doi:10.3102/1076998610376617
Google Scholar | SAGE Journals
Hedges, L. V., Pustejovsky, J. E., Shadish, W. R. (2012). A standardized mean difference effect size for single case designs. Research Synthesis Methods, 3, 224239. doi:10.1002/jrsm.1052
Google Scholar | Crossref | Medline
Hedges, L. V., Pustejovsky, J. E., Shadish, W. R. (2013). A standardized mean difference effect size for multiple baseline designs across individuals. Research Synthesis Methods, 4, 324341. doi:10.1002/jrsm.1086
Google Scholar | Crossref | Medline
Hedges, L. V., Tipton, E., Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1, 3965. doi:10.1002/jrsm.5
Google Scholar | Crossref | Medline
Hersen, M. (1990). Single-case experimental designs. In Bellack, A. S., Hersen, M., Kazdin, A. E. (Eds.), International handbook of behavior modification and therapy (2nd ed., pp. 175210). New York, NY: Plenum Press.
Google Scholar | Crossref
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945960.
Google Scholar | Crossref
Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S. L., Wolery, M. (2005). The use of single-subject research to identify evidence-based practice in special education. Exceptional Children, 71, 165179.
Google Scholar | SAGE Journals
Horner, R. H., Swaminathan, H., Sugai, G., Smolkowski, K. (2012). Considerations for the systematic analysis and use of single-case research. Education and Treatment of Children, 35, 269290. doi:10.1353/etc.2012.0011
Google Scholar | Crossref
Huitema, B. E., McKean, J. W. (2000). Design specification issues in time-series intervention models. Educational and Psychological Measurement, 60, 3858. doi:10.1177/00131640021970358
Google Scholar | SAGE Journals
Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings. New York, NY: Oxford University Press.
Google Scholar
Kenward, M. G., Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983997.
Google Scholar | Crossref | Medline
Kenward, M. G., Roger, J. H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 25832595. doi:10.1016/j.csda.2008.12.013
Google Scholar | Crossref
Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., Shadish, W. R. (2012). Single-case intervention research design standards. Remedial and Special Education, 34, 2638. doi:10.1177/0741932512452794
Google Scholar | SAGE Journals
Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects models in s and S-PLUS. New York, NY: Springer Verlag.
Google Scholar | Crossref
Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. (2012). nlme: Linear and nonlinear mixed effects models. Retrieved from http://cran.r-project.org/package=nlme
Google Scholar
SAS Institute Inc . (2008). SAS/STAT(R) 9.2 user’s guide. Cary, NC:Author.
Google Scholar
Schutte, N. S., Malouff, J. M., Brown, R. F. (2008). Efficacy of an emotion-focused treatment for prolonged fatigue. Behavior Modification, 32, 699713. doi:10.1177/0145445508317133
Google Scholar | SAGE Journals
Scruggs, T. E., Mastropieri, M. A., Casto, G. (1987). The quantitative synthesis of single-subject research. Remedial and Special Education, 8, 2443.
Google Scholar | SAGE Journals
Shadish, W. R., Rindskopf, D. M., Hedges, L. V., Sullivan, K. J. (2013). Bayesian estimates of autocorrelations in single-case designs. Behavior Research Methods, 45, 813821. doi:10.3758/s13428-012-0282-1
Google Scholar | Crossref | Medline
Shadish, W. R., Sullivan, K. J. (2011). Characteristics of single-case designs used to assess intervention effects in 2008. Behavior Research Methods, 43, 971980. doi:10.3758/s13428-011-0111-y
Google Scholar | Crossref | Medline
Singer, J. D., Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press.
Google Scholar | Crossref
Smith, J. D. (2012). Single-case experimental designs: A systematic review of published research and current standards. Psychological Methods, 17, 510550. doi:10.1037/a0029312
Google Scholar | Crossref | Medline
StataCorp . (2011). Stata, release 12: Longitudinal-data/panel-data reference manual. College Station, TX: Stata Press.
Google Scholar
Wolery, M., Busick, M., Reichow, B., Barton, E. E. (2010). Comparison of overlap methods for quantitatively synthesizing single-subject data. The Journal of Special Education, 44, 1828. doi:10.1177/0022466908328009
Google Scholar | SAGE Journals
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

JEB-article-ppv for $37.50

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top