Abstract
In single-case research, the multiple baseline design is a widely used approach for evaluating the effects of interventions on individuals. Multiple baseline designs involve repeated measurement of outcomes over time and the controlled introduction of a treatment at different times for different individuals. This article outlines a general framework for defining effect sizes in multiple baseline designs that are directly comparable to the standardized mean difference from a between-subjects randomized experiment. The target, design-comparable effect size parameter can be estimated using restricted maximum likelihood together with a small sample correction analogous to Hedges’s g. The approach is demonstrated using hierarchical linear models that include baseline time trends and treatment-by-time interactions. A simulation compares the performance of the proposed estimator to that of an alternative, and an application illustrates the model-fitting process.
References
|
Algina, J., Keselman, H. J. (2003). Approximate confidence intervals for effect sizes. Educational and Psychological Measurement, 63, 537–553. doi:10.1177/0013164403256358 Google Scholar | SAGE Journals | |
|
Bailey, J. S., Burch, M. R. (2002). Research methods in applied behavior analysis. Thousand Oaks, CA: Sage. Google Scholar | Crossref | |
|
Baldwin, S. A., Fellingham, G. W. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164. doi:10.1037/a0030642 Google Scholar | Crossref | Medline | |
|
Beretvas, S. N., Chung, H. (2008). A review of meta-analyses of single-subject experimental designs: Methodological issues and practice. Evidence-Based Communication Assessment and Intervention, 2, 129–141. doi:10.1080/17489530802446302 Google Scholar | Crossref | |
|
Borckardt, J. J., Nash, M. R., Murphy, M. D., Moore, M., Shaw, D., O’Neil, P. (2008). Clinical practice as natural laboratory for psychotherapy research: A guide to case-based time-series analysis. The American Psychologist, 63, 77–95. doi:10.1037/0003-066X.63.2.77 Google Scholar | Crossref | Medline | |
|
Busse, R. T., Kratochwill, T. R., Elliott, S. N. (1995). Meta-analysis for single-case consultation outcomes: Applications to research and practice. Journal of School Psychology, 33, 269–285. Google Scholar | Crossref | |
|
Center, B. A., Skiba, R. J., Casey, A. (1985). A methodology for the quantitative synthesis of intra-subject design research. The Journal of Special Education, 19, 387–400. Google Scholar | SAGE Journals | |
|
Chung, Y., Rabe-Hesketh, S., Dorie, V., Gelman, A., Liu, J. (2013). A nondegenerate penalized likelihood estimator for variance parameters in multilevel models. Psychometrika, 78, 685–709. doi:10.1007/s11336-013-9328-2 Google Scholar | Crossref | Medline | |
|
Cooper, H. M. (2009). Hypotheses and problems in research synthesis. In Cooper, H. M., Hedges, L. V, Valentine, J. (Eds.), The handbook of research synthesis and meta-analysis (2nd ed., pp. 19–35). New York, NY: Russell Sage Foundation. Google Scholar | |
|
Cumming, G., Finch, S. (2001). A primer on the understanding, use, and calculation of confidence intervals that are based on central and noncentral distributions. Educational and Psychological Measurement, 61, 532–574. doi:10.1177/0013164401614002 Google Scholar | SAGE Journals | |
|
Efron, B., Tibshirani, R. J. (1998). An introduction to the bootstrap. Boca Raton, FL: Chapman & Hall/CRC. Google Scholar | |
|
Ferron, J. M., Bell, B. A., Hess, M. R., Rendina-Gobioff, G., Hibbard, S. T. (2009). Making treatment effect inferences from multiple-baseline data: The utility of multilevel modeling approaches. Behavior Research Methods, 41, 372–384. doi:10.3758/BRM.41.2.372 Google Scholar | Crossref | Medline | |
|
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515–533. Google Scholar | Crossref | |
|
Gorsuch, R. L. (1983). Three methods for analyzing limited time-series (N of 1) data. Behavioral Assessment, 5, 141–154. Google Scholar | |
|
Gottman, J. M. (1981). Time-series analysis: A comprehensive introduction for social scientists. Cambridge, England: Cambridge University Press. Google Scholar | |
|
Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics. 6, 107–128. Google Scholar | SAGE Journals | |
|
Hedges, L. V. (2007). Effect sizes in cluster-randomized designs. Journal of Educational and Behavioral Statistics, 32, 341–370. doi:10.3102/1076998606298043 Google Scholar | SAGE Journals | |
|
Hedges, L. V. (2011). Effect sizes in three-level cluster-randomized experiments. Journal of Educational and Behavioral Statistics. 36, 346–380. doi:10.3102/1076998610376617 Google Scholar | SAGE Journals | |
|
Hedges, L. V., Pustejovsky, J. E., Shadish, W. R. (2012). A standardized mean difference effect size for single case designs. Research Synthesis Methods, 3, 224–239. doi:10.1002/jrsm.1052 Google Scholar | Crossref | Medline | |
|
Hedges, L. V., Pustejovsky, J. E., Shadish, W. R. (2013). A standardized mean difference effect size for multiple baseline designs across individuals. Research Synthesis Methods, 4, 324–341. doi:10.1002/jrsm.1086 Google Scholar | Crossref | Medline | |
|
Hedges, L. V., Tipton, E., Johnson, M. C. (2010). Robust variance estimation in meta-regression with dependent effect size estimates. Research Synthesis Methods, 1, 39–65. doi:10.1002/jrsm.5 Google Scholar | Crossref | Medline | |
|
Hersen, M. (1990). Single-case experimental designs. In Bellack, A. S., Hersen, M., Kazdin, A. E. (Eds.), International handbook of behavior modification and therapy (2nd ed., pp. 175–210). New York, NY: Plenum Press. Google Scholar | Crossref | |
|
Holland, P. W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945–960. Google Scholar | Crossref | |
|
Horner, R. H., Carr, E. G., Halle, J., McGee, G., Odom, S. L., Wolery, M. (2005). The use of single-subject research to identify evidence-based practice in special education. Exceptional Children, 71, 165–179. Google Scholar | SAGE Journals | |
|
Horner, R. H., Swaminathan, H., Sugai, G., Smolkowski, K. (2012). Considerations for the systematic analysis and use of single-case research. Education and Treatment of Children, 35, 269–290. doi:10.1353/etc.2012.0011 Google Scholar | Crossref | |
|
Huitema, B. E., McKean, J. W. (2000). Design specification issues in time-series intervention models. Educational and Psychological Measurement, 60, 38–58. doi:10.1177/00131640021970358 Google Scholar | SAGE Journals | |
|
Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings. New York, NY: Oxford University Press. Google Scholar | |
|
Kenward, M. G., Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. Google Scholar | Crossref | Medline | |
|
Kenward, M. G., Roger, J. H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595. doi:10.1016/j.csda.2008.12.013 Google Scholar | Crossref | |
|
Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., Shadish, W. R. (2012). Single-case intervention research design standards. Remedial and Special Education, 34, 26–38. doi:10.1177/0741932512452794 Google Scholar | SAGE Journals | |
|
Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects models in s and S-PLUS. New York, NY: Springer Verlag. Google Scholar | Crossref | |
|
Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. (2012). nlme: Linear and nonlinear mixed effects models. Retrieved from http://cran.r-project.org/package=nlme Google Scholar | |
|
SAS Institute Inc . (2008). SAS/STAT(R) 9.2 user’s guide. Cary, NC:Author. Google Scholar | |
|
Schutte, N. S., Malouff, J. M., Brown, R. F. (2008). Efficacy of an emotion-focused treatment for prolonged fatigue. Behavior Modification, 32, 699–713. doi:10.1177/0145445508317133 Google Scholar | SAGE Journals | |
|
Scruggs, T. E., Mastropieri, M. A., Casto, G. (1987). The quantitative synthesis of single-subject research. Remedial and Special Education, 8, 24–43. Google Scholar | SAGE Journals | |
|
Shadish, W. R., Rindskopf, D. M., Hedges, L. V., Sullivan, K. J. (2013). Bayesian estimates of autocorrelations in single-case designs. Behavior Research Methods, 45, 813–821. doi:10.3758/s13428-012-0282-1 Google Scholar | Crossref | Medline | |
|
Shadish, W. R., Sullivan, K. J. (2011). Characteristics of single-case designs used to assess intervention effects in 2008. Behavior Research Methods, 43, 971–980. doi:10.3758/s13428-011-0111-y Google Scholar | Crossref | Medline | |
|
Singer, J. D., Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. New York, NY: Oxford University Press. Google Scholar | Crossref | |
|
Smith, J. D. (2012). Single-case experimental designs: A systematic review of published research and current standards. Psychological Methods, 17, 510–550. doi:10.1037/a0029312 Google Scholar | Crossref | Medline | |
|
StataCorp . (2011). Stata, release 12: Longitudinal-data/panel-data reference manual. College Station, TX: Stata Press. Google Scholar | |
|
Wolery, M., Busick, M., Reichow, B., Barton, E. E. (2010). Comparison of overlap methods for quantitatively synthesizing single-subject data. The Journal of Special Education, 44, 18–28. doi:10.1177/0022466908328009 Google Scholar | SAGE Journals |
