Abstract
Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural equation models to add SEMM to their toolkit of exploratory analytic options. We describe how the SEMM captures potential nonlinearity between latent variables, and how confidence bands (CBs; point wise and simultaneous) for the recovered latent function are constructed and interpreted. We then illustrate the usefulness of CBs for inference with an empirical example on the effect of emotions on cognitive processing. We also introduce a visualization tool that automatically generates plots of the latent regression and their CBs to promote user accessibility. Finally, we conclude with a discussion on the use of this SPM for exploratory research.
References
|
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723. doi:10.1109/TAC.1974.1100705 Google Scholar | Crossref | |
|
Alloy, L. B., Abramson, L. Y. (1979). Judgment of contingency in depressed and non-depressed students: Sadder but wiser? Journal of Experimental Psychology: General, 108, 441–485. doi:10.1037/0096-3445.108.4.441 Google Scholar | Crossref | Medline | |
|
American Educational Research Association . (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35, 33–40. doi:10.3102/0013189X035006033 Google Scholar | SAGE Journals | |
|
American Psychological Association . (2010). Publication manual of the American Psychological Association. Washington, DC: Author. Google Scholar | |
|
Arminger, G., Stein, P. (1997). Finite mixtures of covariance structure models with regressors: Loglikelihood function, minimum distance estimation, fit indices, and a complex example. Sociological Methods & Research, 26, 148–182. doi:10.1177/0049124197026002002 Google Scholar | SAGE Journals | |
|
Arminger, G., Stein, P., Wittenberg, J. (1999). Mixtures of conditional mean-and covariance-structure models. Psychometrika, 64, 475–494. doi:10.1007/BF02294568 Google Scholar | Crossref | |
|
Bauer, D. J. (2005). A semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 12, 513–535. doi:10.1207/s15328007sem1204_1 Google Scholar | Crossref | |
|
Bauer, D. J., Baldasaro, R. E., Gottfredson, N. C. (2012). Diagnostic procedures for detecting nonlinear relationships between latent variables. Structural Equation Modeling, 19, 157–177. doi:10.1080/10705511.2012.659612 Google Scholar | Crossref | |
|
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., … others (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika, 76, 306–317. doi:10.1007/s11336-010-9200-6 Google Scholar | Crossref | Medline | |
|
Bollen, K. A. (1989). Structural equation models with latent variables. New York, NY: Wiley. Google Scholar | |
|
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829–836. doi:10.1080/01621459.1979.10481038 Google Scholar | Crossref | |
|
Cleveland, W. S., Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610. doi:10.1080/01621459.1988.10478639 Google Scholar | Crossref | |
|
Dolan, C. V., van der Maas, H. L. (1998). Fitting multivariage normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227–253. doi:10.1007/BF02294853 Google Scholar | Crossref | |
|
Efron, B., Tibshirani, R. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall. Google Scholar | Crossref | |
|
Jedidi, K., Jagpal, H. S., DeSarbo, W. S. (1997a). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39–59. doi:10.1287/mksc.16.1.39 Google Scholar | Crossref | |
|
Jedidi, K., Jagpal, H. S., DeSarbo, W. S. (1997b). STEMM: A general finite mixture structural equation model. Journal of Classification, 14, 23–50. doi:10.1007/s003579900002 Google Scholar | Crossref | |
|
Leemis, L. M., McQueston, J. T. (2008). Univariate distribution relationships. The American Statistician, 62, 45–53. doi:10.1198/000313008X270448 Google Scholar | Crossref | |
|
Maxwell, S. E., Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective. New York, NY: Psychology Press. Google Scholar | |
|
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525–543. doi:10.1007/BF02294825 Google Scholar | Crossref | |
|
Muthén, B. O. (2001). Latent variable mixture modeling. In Marcoulides, G. A., Schumacker, R. E. (Eds.), New developments and techniques in structural equation modeling (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum. Google Scholar | |
|
Muthén, L. K., Muthén, B. O. (2011). Mplus user’s guide (6th ed.) [Computer software manual]. Los Angeles, CA: Author. Google Scholar | |
|
Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996). Applied linear statistical models (4th ed.). Chicago, IL: Irwin. Google Scholar | |
|
Nylund, K. L., Asparouhov, T., Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535–569. doi:10.1080/10705510701575396 Google Scholar | Crossref | |
|
Pek, J., Chalmers, R. P. (2015). Diagnosing nonlinearity with confidence envelopes for a semiparametric approach to modeling bivariate nonlinear relations among latent variables. Structural Equation Modeling, 22, 288–293. doi:10.1080/10705511.2014.937790 Google Scholar | Crossref | |
|
Pek, J., Losardo, D., Bauer, D. J. (2011). Confidence intervals for a semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 18, 537–553. doi:10.1080/10705511.2011.607072 Google Scholar | Crossref | |
|
Pek, J., Sterba, S. K., Kok, B. E., Bauer, D. J. (2009). Estimating and visualizing nonlinear relations among latent variables: A semiparametric approach. Multivariate Behavioral Research, 44, 407–436. doi:10.1080/00273170903103290 Google Scholar | Crossref | Medline | |
|
Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments. British Medical Journal, 316, 1236–1238. doi:10.1136/bmj.316.7139.1236 Google Scholar | Crossref | Medline | |
|
R Core Team . (2013). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria: Author. Retrieved from http://www.R-project.org/ Google Scholar | |
|
Raykov, T., Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11, 621–637. doi:10.1207/s15328007sem1104 7 Google Scholar | Crossref | |
|
RStudio, Incorporation . (2014). Shiny: Web application framework for R [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=shiny Google Scholar | |
|
Scheffé, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40, 87–110. doi:10.1093/biomet/40.1-2.87 Google Scholar | |
|
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464. doi:10.1214/aos/1176344136 Google Scholar | Crossref | |
|
Schwarz, N. (2000). Emotion, cognition, and decision making. Cognition & Emotion, 14, 433–440. doi:10.1080/026999300402745 Google Scholar | Crossref | |
|
Schwarz, N., Clore, G. L. (1996). Feelings and phenomenal experiences. In Higgins, E. T., Kruglanski, A. (Eds.), Social psychology: Handbook of basic principles (pp. 385–407). New York, NY: Guilford. Google Scholar | |
|
Thissen, D., Wainer, H. (1990). Confidence envelopes for item response theory. Journal of Educational and Behavioral Statistics, 15, 113–128. doi:10.3102/10769986015002113 Google Scholar | SAGE Journals | |
|
Titterington, D. M., Smith, A. F., Makov, U. E. (1985). Statistical analysis of finite mixture distributions. Chichester, England: Wiley. Google Scholar | |
|
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34, 23–25. doi:10.1080/00031305.1980.10482706 Google Scholar | |
|
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426–482. Retrieved from http://www.jstor.org/stable/1990256 Google Scholar | |
|
Wilkinson, L. , & the Task Force on Statistical Inference . (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594. doi:10.1037/0003-066X.54.8.594 Google Scholar | Crossref | |
|
Working, H., Hotelling, H. (1929). Applications of the theory of error to the interpretation of trends. Journal of the American Statistical Association, 24, 73–85. doi:10.1080/01621459.1929.10506274 Google Scholar |
