Structural equation mixture models (SEMMs), when applied as a semiparametric model (SPM), can adequately recover potentially nonlinear latent relationships without their specification. This SPM is useful for exploratory analysis when the form of the latent regression is unknown. The purpose of this article is to help users familiar with structural equation models to add SEMM to their toolkit of exploratory analytic options. We describe how the SEMM captures potential nonlinearity between latent variables, and how confidence bands (CBs; point wise and simultaneous) for the recovered latent function are constructed and interpreted. We then illustrate the usefulness of CBs for inference with an empirical example on the effect of emotions on cognitive processing. We also introduce a visualization tool that automatically generates plots of the latent regression and their CBs to promote user accessibility. Finally, we conclude with a discussion on the use of this SPM for exploratory research.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716723. doi:10.1109/TAC.1974.1100705
Google Scholar | Crossref
Alloy, L. B., Abramson, L. Y. (1979). Judgment of contingency in depressed and non-depressed students: Sadder but wiser? Journal of Experimental Psychology: General, 108, 441485. doi:10.1037/0096-3445.108.4.441
Google Scholar | Crossref | Medline
American Educational Research Association . (2006). Standards for reporting on empirical social science research in AERA publications. Educational Researcher, 35, 3340. doi:10.3102/0013189X035006033
Google Scholar | SAGE Journals
American Psychological Association . (2010). Publication manual of the American Psychological Association. Washington, DC: Author.
Google Scholar
Arminger, G., Stein, P. (1997). Finite mixtures of covariance structure models with regressors: Loglikelihood function, minimum distance estimation, fit indices, and a complex example. Sociological Methods & Research, 26, 148182. doi:10.1177/0049124197026002002
Google Scholar | SAGE Journals
Arminger, G., Stein, P., Wittenberg, J. (1999). Mixtures of conditional mean-and covariance-structure models. Psychometrika, 64, 475494. doi:10.1007/BF02294568
Google Scholar | Crossref
Bauer, D. J. (2005). A semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 12, 513535. doi:10.1207/s15328007sem1204_1
Google Scholar | Crossref
Bauer, D. J., Baldasaro, R. E., Gottfredson, N. C. (2012). Diagnostic procedures for detecting nonlinear relationships between latent variables. Structural Equation Modeling, 19, 157177. doi:10.1080/10705511.2012.659612
Google Scholar | Crossref
Boker, S., Neale, M., Maes, H., Wilde, M., Spiegel, M., Brick, T., … others (2011). OpenMx: An open source extended structural equation modeling framework. Psychometrika, 76, 306317. doi:10.1007/s11336-010-9200-6
Google Scholar | Crossref | Medline
Bollen, K. A. (1989). Structural equation models with latent variables. New York, NY: Wiley.
Google Scholar
Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829836. doi:10.1080/01621459.1979.10481038
Google Scholar | Crossref
Cleveland, W. S., Devlin, S. J. (1988). Locally weighted regression: An approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596610. doi:10.1080/01621459.1988.10478639
Google Scholar | Crossref
Dolan, C. V., van der Maas, H. L. (1998). Fitting multivariage normal finite mixtures subject to structural equation modeling. Psychometrika, 63, 227253. doi:10.1007/BF02294853
Google Scholar | Crossref
Efron, B., Tibshirani, R. (1993). An introduction to the bootstrap. New York, NY: Chapman & Hall.
Google Scholar | Crossref
Jedidi, K., Jagpal, H. S., DeSarbo, W. S. (1997a). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 3959. doi:10.1287/mksc.16.1.39
Google Scholar | Crossref
Jedidi, K., Jagpal, H. S., DeSarbo, W. S. (1997b). STEMM: A general finite mixture structural equation model. Journal of Classification, 14, 2350. doi:10.1007/s003579900002
Google Scholar | Crossref
Leemis, L. M., McQueston, J. T. (2008). Univariate distribution relationships. The American Statistician, 62, 4553. doi:10.1198/000313008X270448
Google Scholar | Crossref
Maxwell, S. E., Delaney, H. D. (2004). Designing experiments and analyzing data: A model comparison perspective. New York, NY: Psychology Press.
Google Scholar
Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. Psychometrika, 58, 525543. doi:10.1007/BF02294825
Google Scholar | Crossref
Muthén, B. O. (2001). Latent variable mixture modeling. In Marcoulides, G. A., Schumacker, R. E. (Eds.), New developments and techniques in structural equation modeling (pp. 133). Mahwah, NJ: Lawrence Erlbaum.
Google Scholar
Muthén, L. K., Muthén, B. O. (2011). Mplus user’s guide (6th ed.) [Computer software manual]. Los Angeles, CA: Author.
Google Scholar
Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996). Applied linear statistical models (4th ed.). Chicago, IL: Irwin.
Google Scholar
Nylund, K. L., Asparouhov, T., Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535569. doi:10.1080/10705510701575396
Google Scholar | Crossref
Pek, J., Chalmers, R. P. (2015). Diagnosing nonlinearity with confidence envelopes for a semiparametric approach to modeling bivariate nonlinear relations among latent variables. Structural Equation Modeling, 22, 288293. doi:10.1080/10705511.2014.937790
Google Scholar | Crossref
Pek, J., Losardo, D., Bauer, D. J. (2011). Confidence intervals for a semiparametric approach to modeling nonlinear relations among latent variables. Structural Equation Modeling, 18, 537553. doi:10.1080/10705511.2011.607072
Google Scholar | Crossref
Pek, J., Sterba, S. K., Kok, B. E., Bauer, D. J. (2009). Estimating and visualizing nonlinear relations among latent variables: A semiparametric approach. Multivariate Behavioral Research, 44, 407436. doi:10.1080/00273170903103290
Google Scholar | Crossref | Medline
Perneger, T. V. (1998). What’s wrong with Bonferroni adjustments. British Medical Journal, 316, 12361238. doi:10.1136/bmj.316.7139.1236
Google Scholar | Crossref | Medline
R Core Team . (2013). R: A language and environment for statistical computing [Computer software manual]. Vienna, Austria: Author. Retrieved from http://www.R-project.org/
Google Scholar
Raykov, T., Marcoulides, G. A. (2004). Using the delta method for approximate interval estimation of parameter functions in SEM. Structural Equation Modeling, 11, 621637. doi:10.1207/s15328007sem1104 7
Google Scholar | Crossref
RStudio, Incorporation . (2014). Shiny: Web application framework for R [Computer software manual]. Retrieved from http://CRAN.R-project.org/package=shiny
Google Scholar
Scheffé, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40, 87110. doi:10.1093/biomet/40.1-2.87
Google Scholar
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461464. doi:10.1214/aos/1176344136
Google Scholar | Crossref
Schwarz, N. (2000). Emotion, cognition, and decision making. Cognition & Emotion, 14, 433440. doi:10.1080/026999300402745
Google Scholar | Crossref
Schwarz, N., Clore, G. L. (1996). Feelings and phenomenal experiences. In Higgins, E. T., Kruglanski, A. (Eds.), Social psychology: Handbook of basic principles (pp. 385407). New York, NY: Guilford.
Google Scholar
Thissen, D., Wainer, H. (1990). Confidence envelopes for item response theory. Journal of Educational and Behavioral Statistics, 15, 113128. doi:10.3102/10769986015002113
Google Scholar | SAGE Journals
Titterington, D. M., Smith, A. F., Makov, U. E. (1985). Statistical analysis of finite mixture distributions. Chichester, England: Wiley.
Google Scholar
Tukey, J. W. (1980). We need both exploratory and confirmatory. The American Statistician, 34, 2325. doi:10.1080/00031305.1980.10482706
Google Scholar
Wald, A. (1943). Tests of statistical hypotheses concerning several parameters when the number of observations is large. Transactions of the American Mathematical Society, 54, 426482. Retrieved from http://www.jstor.org/stable/1990256
Google Scholar
Wilkinson, L. , & the Task Force on Statistical Inference . (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594. doi:10.1037/0003-066X.54.8.594
Google Scholar | Crossref
Working, H., Hotelling, H. (1929). Applications of the theory of error to the interpretation of trends. Journal of the American Statistical Association, 24, 7385. doi:10.1080/01621459.1929.10506274
Google Scholar
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

JEB-article-ppv for $37.50

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top