This article proposes a flexible extension of the Fay–Herriot model for making inferences from coarsened, group-level achievement data, for example, school-level data consisting of numbers of students falling into various ordinal performance categories. The model builds on the heteroskedastic ordered probit (HETOP) framework advocated by Reardon, Shear, Castellano, and Ho by allowing group parameters to be modeled with regressions on group-level covariates, and residuals modeled using the flexible exponential family of distributions recommended by Efron. We demonstrate that the alternative modeling framework, termed the “Fay–Herriot heteroskedastic ordered probit” (FH-HETOP) model, is useful for mitigating some of the challenges with direct maximum likelihood estimators from the HETOP model. We conduct a simulation study to compare the costs and benefits of several methods for using the FH-HETOP model to estimate group parameters and functions of them, including posterior means, constrained Bayes estimators, and the “triple goal” estimators of Shen and Louis. We also provide an application of the FH-HETOP model to math proficiency data from the Early Childhood Longitudinal Study. Code for estimating the FH-HETOP model and conducting supporting calculations is provided in a new package for the R environment.

Albert, J. H., Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669679. doi:10.1080/01621459.1993.10476321
Google Scholar
Azzalini, A., Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika, 83, 715726. doi:10.1093/biomet/83.4.715
Google Scholar
Carlin, B., Louis, T. (2000). Bayes and empirical Bayes methods for data analysis (2nd ed.). Boca Raton, FL: Chapman and Hall/CRC Press. doi:10.1201/9781420057669
Google Scholar
Casella, G. (1985). An introduction to empirical Bayes data analysis. The American Statistician, 39, 8387. doi:10.2307/2682801
Google Scholar
Devine, O., Louis, T. (1994). A constrained empirical Bayes estimator for incidence rates in areas with small populations. Statistics in Medicine, 13, 11191133. doi:10.1002/sim.4780131104
Google Scholar | Medline
DeYoreo, M., Kottas, A. (2017). Bayesian nonparametric modeling for multivariate ordinal regression. Journal of Computational and Graphical Statistics, 27, 7184. doi:10.1080/10618600.2017.1316280
Google Scholar
Efron, B. (2014). Two modeling strategies for empirical Bayes estimation. Statistical Science, 29, 285301. doi:10.1214/13-sts455
Google Scholar | Medline
Efron, B. (2016). Empirical Bayes deconvolution estimates. Biometrika, 103, 120. doi:10.1093/biomet/asv068
Google Scholar
Efron, B., Morris, C. (1973). Stein’s estimation rule and its competitors—An empirical Bayes approach. Journal of the American Statistical Association, 68, 117130. doi:10.2307/2284155
Google Scholar
Efron, B., Morris, C. (1977). Stein’s paradox in statistics. Scientific American, 236, 119127.
Google Scholar
Eilers, P., Marx, B. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89102.
Google Scholar
Fahle, E. M., Reardon, S. F. (2018). How much do test scores vary among school districts? New estimates using population data, 2009-2015. Educational Researcher, 47, 221234. doi:10.3102/0013189X18759524
Google Scholar | SAGE Journals
Fay, R., Herriot, R. (1979). Estimates of income for small places: An application of James-Stein procedures to census data. Journal of the American Statistical Association, 74, 269277. doi:10.2307/2286322
Google Scholar
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1, 209230. doi:10.1214/aos/1176342360
Google Scholar
Fienberg, S. E., Holland, P. W. (1972). On the choice of flattening constants for estimating multinomial probabilities. Journal of Multivariate Analysis, 2, 127134. doi:10.1016/0047-259x(72)90014-0
Google Scholar
Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika, 80, 2738. doi:10.2307/2336755
Google Scholar
Gelman, A., Carlin, J., Stern, H., Rubin, D. (1995). Bayesian data analysis. London, England: Chapman & Hall.
Google Scholar | Crossref
Gelman, A., Rubin, D. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457472. doi:10.1214/ss/1177011136
Google Scholar
Ghosh, M. (1992). Constrained Bayes estimation with applications. Journal of the American Statistical Association, 87, 533540. doi:10.2307/2290287
Google Scholar
Ghosh, M., Rao, J. (1994). Small area estimation: An appraisal. Statistical Science, 9, 5576. doi:10.1214/ss/1177010647
Google Scholar
Gilks, W. R., Richardson, S., Spiegelhalter, D. J. (1996). Markov Chain Monte Carlo in practice. London, England: Chapman & Hall.
Google Scholar
Gill, J., Casella, G. (2009). Nonparametric priors for ordinal Bayesian social science models: Specification and estimation. Journal of the American Statistical Association, 104, 453454. doi:10.1198/jasa.2009.0039
Google Scholar
Gu, Y., Fiebig, D. G., Cripps, E., Kohn, R. (2009). Bayesian estimation of a random effects heteroscedastic probit model. The Econometrics Journal, 12, 324339. doi:10.1111/j.1368-423x.2009.00283.x
Google Scholar
Haberman, S. J. (1980). Discussion of “regression models for ordinal data. Journal of the Royal Statistical Society Series B, 42, 136137.
Google Scholar
Haberman, S. J. (2005). Identifiability of parameters in item response models with unconstrained ability distributions (ETS Research Rep. No. RR-05-24). Princeton, NJ: ETS.
Google Scholar
Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity. Econometrica, 44, 461465. doi:10.2307/1913974
Google Scholar
Hedeker, D., Demirtas, H., Mermelstein, R. J. (2009). A mixed ordinal location scale model for analysis of Ecological Momentary Assessment (EMA) data. Statistics and its Interface, 2, 391401. doi:10.4310/sii.2009.v2.n4.a1
Google Scholar | Medline
Johnson, V. E. (1996). On Bayesian analysis of multirater ordinal data: An application to automated essay grading. Journal of the American Statistical Association, 91, 4251. doi:10.2307/2291381
Google Scholar
Johnson, V. E., Albert, J. H. (1999). Ordinal data modeling. New York, NY: Springer-Verlag.
Google Scholar
Kapur, K., Li, X., Blood, E. A., Hedeker, D. (2015). Bayesian mixed-effects location and scale models for multivariate longitudinal outcomes: An application to Ecological Momentary Assessment data. Statistics in Medicine, 34, 630651. doi:10.1002/sim.6345
Google Scholar | Medline
Kim, J., Choi, K. (2008). Closing the gap: Modeling within-school variance heterogeneity in school effect studies. Asia Pacific Education Review, 9, 206220. doi:10.1007/bf03026500
Google Scholar
Kubokawa, T., Strawderman, W. E. (2013). Dominance properties of constrained Bayes and empirical Bayes estimators. Bernoulli, 19, 22002221. doi:10.3150/12-bej449
Google Scholar
Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 215232. doi:10.2307/2286284
Google Scholar
Leckie, G., French, R., Charlton, C., Browne, W. (2014). Modeling heterogeneous variance-covariance components in two-level models. Journal of Educational and Behavioral Statistics, 39, 307332. doi:10.3102/1076998614546494
Google Scholar | SAGE Journals
Lockwood, J. R., McCaffrey, D. F. (2014). Correcting for test score measurement error in ANCOVA models for estimating treatment effects. Journal of Educational and Behavioral Statistics, 39, 2252. doi:10.3102/1076998613509405
Google Scholar | SAGE Journals
Lockwood, J. R., Savitsky, T. D., McCaffrey, D. F. (2015). Inferring constructs of effective teaching from classroom observations: An application of Bayesian exploratory factor analysis without restrictions. Annals of Applied Statistics, 9, 14841509. doi:10.1214/15-aoas833
Google Scholar | Crossref
Louis, T. (1984). Estimating a population of parameter values using Bayes and empirical Bayes methods. Journal of the American Statistical Association, 79, 393398. doi:10.2307/2288281
Google Scholar
Lyles, R. H., Moore, R., Manatunga, A., Easley, K. (2009). Covariate-adjusted constrained Bayes predictions of random intercepts and slopes. Journal of Modern Applied Statistical Methods, 8, 8194. doi:10.22237/jmasm/1241136360
Google Scholar | Medline
McCullagh, P. (1980). Regression models for ordinal data (with discussion). Journal of the Royal Statistical Society Series B, 42, 109142.
Google Scholar
Mislevy, R. (1984). Estimating latent distributions. Psychometrika, 49, 359381. doi:10.1007/bf02306026
Google Scholar
Mislevy, R., Beaton, A., Kaplan, B., Sheehan, K. (1992). Estimating population characteristics from sparse matrix samples of item responses. Journal of Educational Measurement, 29, 133161. doi:10.1111/j.1745-3984.1992.tb00371.x
Google Scholar
Monroe, S., Cai, L. (2014). Estimation of a Ramsay-curve item response theory model by the Metropolis-Hastings Robbins-Monro algorithm. Educational and Psychological Measurement, 74, 343369. doi:10.1177/0013164413499344
Google Scholar | SAGE Journals
Morris, C. (1983). Parametric empirical Bayes inference: Theory and applications (with discussion). Journal of the American Statistical Association, 78, 4755. doi:10.2307/2287098
Google Scholar
National Center for Education Statistics . (2002). User’s manual for the ECLS-K first grade public-use data files and electronic code book (NCES 2002-135). Retrieved from https://nces.ed.gov/pubs2002/2002135_2.pdf
Google Scholar
Ohlssen, D. I., Sharples, L. D., Spiegelhalter, D. J. (2007). Flexible random-effects models using Bayesian semi-parametric models: Applications to institutional comparisons. Statistics in Medicine, 26, 20882112. doi:10.1002/sim.2666
Google Scholar | Medline
Paddock, S. M., Louis, T. A. (2011). Percentile-based empirical distribution function estimates for performance evaluation of healthcare providers. Journal of the Royal Statistical Society: Series C (Applied Statistics), 60, 575589. doi:10.1111/j.1467-9876.2010.00760.x
Google Scholar | Medline
Paddock, S. M., Ridgeway, G., Lin, R., Louis, T. A. (2006). Flexible distributions for triple-goal estimates in two-stage hierarchical models. Computational Statistics & Data Analysis, 50, 32433262. doi:10.1016/j.csda.2005.05.008
Google Scholar | Medline
Pfefferman, D. (2002). Small area estimation—New developments and directions. International Statistical Review, 70, 125143. doi:10.2307/1403729
Google Scholar
Plummer, M . (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), Vienna, Austria.
Google Scholar
Rabe-Hesketh, S., Pickles, A., Skrondal, A. (2003). Correcting for covariate measurement error in logistic regression using nonparametric maximum likelihood estimation. Statistical Modelling, 3, 215232. doi:10.1191/1471082x03st056oa
Google Scholar | SAGE Journals
Rabe-Hesketh, S., Skrondal, A. (2012). Multilevel and longitudinal modeling using Stata, Volume II: Categorical responses, counts, and survival (3rd ed.). College Station, TX: Stata Press.
Google Scholar
Reardon, S. F., Ho, A. D., Shear, B. R., Fahle, E. M., Kalogrides, D., DiSalvo, R. (2017). Stanford education data archive (Version 2.0). Retrieved from http://purl.stanford.edu/db586ns4974
Google Scholar
Reardon, S. F., Shear, B. R., Castellano, K. E., Ho, A. D. (2017). Using heteroskedastic ordered probit models to recover moments of continuous test score distributions from coarsened data. Journal of Educational and Behavioral Statistics, 42, 345. doi:10.3102/1076998616666279
Google Scholar | SAGE Journals
Roeder, K., Carroll, R., Lindsay, B. (1996). A semiparametric mixture approach to case-control studies with errors in covariables. Journal of the American Statistical Association, 91, 722732. doi:10.2307/2291667
Google Scholar
Savitsky, T. D., McCaffrey, D. F. (2014). Bayesian hierarchical multivariate formulation with factor analysis for nested ordinal data. Psychometrika, 79, 275302. doi:10.1007/s11336-013-9339-z
Google Scholar | Medline
Segawa, E. (2005). A growth model for multilevel ordinal data. Journal of Educational and Behavioral Statistics, 30, 369396. doi:10.3102/10769986030004369
Google Scholar | SAGE Journals
Shen, W., Louis, T. (1998). Triple-goal estimates in two-stage, hierarchical models. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 60, 455471. doi:10.1111/1467-9868.00135
Google Scholar
Shen, W., Louis, T. (1999). Empirical Bayes estimation via the smoothing by roughening approach. Journal of Computational and Graphical Statistics, 8, 800823. doi:10.2307/1390828
Google Scholar
Shen, W., Louis, T. (2000). Triple-goal estimates for disease mapping. Statistics in Medicine, 19, 22952308.
Google Scholar | Medline
Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B: Statistical Methodology, 64, 583639. doi:10.1111/1467-9868.00353
Google Scholar
Vehtari, A., Gelman, A., Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27(5), 14131432. doi:10.1007/s11222-016-9696-4
Google Scholar
Warm, T. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54, 427450. doi:10.1007/bf02294627
Google Scholar
Woods, C. M., Thissen, D. (2006). Item response theory with estimation of the latent population distribution using spline-based densities. Psychometrika, 71, 281301. doi:10.1007/s11336-004-1175-8
Google Scholar | Medline
Access Options

My Account

Welcome
You do not have access to this content.



Chinese Institutions / 中国用户

Click the button below for the full-text content

请点击以下获取该全文

Institutional Access

does not have access to this content.

Purchase Content

24 hours online access to download content

Research off-campus without worrying about access issues. Find out about Lean Library here

Your Access Options


Purchase

JEB-article-ppv for $37.50

Cookies Notification

This site uses cookies. By continuing to browse the site you are agreeing to our use of cookies. Find out more.
Top