Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published January 1997

Stabilization of High Soil and Rock Cut Slope by Soil Bioengineering and Conventional Engineering

Abstract

Construction of a 274.5-m-long (900-ft) and 24.4-m-high (80-ft) soil (upper) and rock (lower) cut slope on the eastbound side of the Massachusetts Turnpike at mile mark 94.1 eastbound for the proposed interchange with Route 146 combined conventional engineering and soil bioengineering solutions. Geologic mapping identified three sections (east, middle, and west) that had different patterns of rock discontinuities, which controlled rock cut design. Each required a different slope design for a stable rock cut. The soil cut design was controlled by soil density, groundwater seepage, and erosion potential from seepage and surface runoff. Soil bioengineering was used to control surface drainage and erosion on the cut soil slope above the 12.2-m-high (40-ft) rock cut and rapidly revegetate the disturbed soil slope, which addressed the project's environmental and aesthetic goals. Conventional crushed-stone drains augment the living soil bioengineering drains. Woody vegetation was used to reinforce the cut soil slope surface. Branches from native living woody plants were installed into the slope face, offering surface reinforcement. Root development along branch lengths provided additional reinforcement. The hydrologic regime was modified as growing plants remove moisture through transpiration and embedded bundled branches channel water off the slope. Basic soil bioengineering stabilization principles by using live fascines and brush layers for soil and rock cut slope stabilization are presented. Discussions include preconstruction conditions, environmental benefits, vegetation harvesting and design, installation, and performance as of October 1996. Cut slope stabilization through soil bioengineering produced an environmentally, aesthetically, and mechanically sound solution, illustrating the benefits of combined technologies.

Get full access to this article

View all access and purchase options for this article.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published: January 1997
Issue published: January 1997

Rights and permissions

© 1997 National Academy of Sciences.
Request permissions for this article.

Authors

Affiliations

Robbin B. Sotir
Robbin B. Sotir & Associates, 434 Villa Rica Road, Marietta, Ga. 30064-2732
Michael A. McCaffrey
GEI Consultants, Inc., 1021 Main Street, Winchester, Mass. 01890-1970

Metrics and citations

Metrics

Journals metrics

This article was published in Transportation Research Record: Journal of the Transportation Research Board.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 6

*Article usage tracking started in December 2016


Altmetric

See the impact this article is making through the number of times it’s been read, and the Altmetric Score.
Learn more about the Altmetric Scores



Articles citing this one

Receive email alerts when this article is cited

Web of Science: 0

Crossref: 1

  1. Biotechnical engineering as an alternative to traditional engineering ...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub