Skip to main content
Intended for healthcare professionals
Restricted access
Research article
First published online January 1, 2011

Methodology for Checking Shortcomings in Three-Dimensional Alignment

Abstract

Road design by highway planning authorities and planning offices is performed at three separate levels: the horizontal and the vertical projections and the cross section. Experiments have shown that shortcomings in the three-dimensional (3-D) alignment may still occur when these three levels are processed separately and then superimposed. It makes sense to calculate virtual perspective views and special control parameters with the use of visualization tools and then to check the 3-D alignment with those tools. Shortcomings of this kind can cause accidents, particularly on two-lane rural roads. Unified model assumptions that match the driver's vision must be set to ensure the comparability of the central perspective views. Drivers absorb images from a central perspective when driving along a road. A driver's inability to recognize a section of the road in the driving area ahead gives rise to blind sections. Designers need to use standard 3-D elements as much possible. These shortcomings are of two major types: those that are safety related and those that are merely aesthetic. A methodology has been developed to check the 3-D alignment for shortcomings in the three basic stages (checking for standard 3-D elements, safety-related shortcomings, and aesthetic shortcomings). By using the visualization tool VISS ALL 3D, the design engineer can calculate the virtual perspective views with the safety-related shortcomings and illustrate them in the blind-section graph. Shortcomings in the 3-D alignment must be eliminated at the end of the redesign process.

Get full access to this article

View all access and purchase options for this article.

References

1. Kuhn W. Die Anwendung der Visualisierung in der Verkehrsplanung. Straβe und Autobahn, Heft 51, 2002 (in German).
2. Weise G., Dietze M., Ebersbach D., and Kuczora V. Entwicklung eines praktikablen Verfahrens zur Berücksichtigung der räumlichen Linienführung von Außerortsstraßen. Forschung Straβenbau und Straβenverkehrstechnik, Heft 849, Bundesministerium für Verkehrs, Bau- und Wohnungswesen, 2002 (in German).
3. Zimmermann M., Loeben W. H., Roos R., Lippold C., and Dietze M. Entwicklung eines Verfahrens zur Kontrolle und Bewertung der räumlichen Linienführung von Außerortsstraßen auf der Grundlage quantitativer Parameter. Straβenbau und Straβenverkehrstechnik, Heft 960, Bundesministerium für Verkehr, Bau und Stadtentwicklung, Bonn, Germany, 2007 (in German).
4. Kuhn W., Leithoff I., Ebersbach D., Lippold C., Zimmermann M., and Schulz R. Grundlagen und Anwendungsmöglichkeiten der Visualisierung in der Straßenplanung. (Research Report on Behalf of the Federal Ministry of Transport, Building and Urban Affairs), 2007 (in German).
5. Richtlinein für die Anlage von Straβen, RAS, Teil: Lineinfuhrung, RAS-L. Forschungsgesellschaft fur Strassen-und Verkehrswesen (in German), Kirschbaum Verlag, Bonn, Germany, 1995.
6. Kuhn W.et al. Hinweise zur Visualisierung von Entwürfen für außerörtliche Straßen (HViSt). Wissensdokument W1, Forschungsgesellschaft für Straβen- und Verkehrswesen (FGSV), 2008 (in German).
7. Zimmermann M. Quantitative Methoden zur Beurteilung der räumlichen Linienführung von Straβen. PhD dissertation. Institut für Straßen- und Eisenbahnwesen der Universität Karlsruhe (TH), 2001 (in German).

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: January 1, 2011
Issue published: January 2011

Rights and permissions

© 2011 National Academy of Sciences.
Request permissions for this article.

Authors

Affiliations

Wolfgang Kuhn
Institute of Traffic System Techniques, University of Applied Science Zwickau, Dr.-Friedrichs-Ring-2a, 08056 Zwickau, Germany.
Manoj K. Jha
Department of Civil Engineering, Morgan State University, 1700 East Cold Spring Lane, Baltimore, MD 21251.

Notes

Metrics and citations

Metrics

Journals metrics

This article was published in Transportation Research Record: Journal of the Transportation Research Board.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 8

*Article usage tracking started in December 2016


Altmetric

See the impact this article is making through the number of times it’s been read, and the Altmetric Score.
Learn more about the Altmetric Scores



Articles citing this one

Receive email alerts when this article is cited

Web of Science: 0

Crossref: 3

  1. Three-Dimensional Virtual Highway Model for Sight-Distance Evaluation ...
    Go to citation Crossref Google Scholar
  2. New highway geometric design methods for minimizing vehicular fuel con...
    Go to citation Crossref Google Scholar
  3. Metaheuristic Applications in Highway and Rail Infrastructure Planning...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub