Abstract
Helical tomotherapy (HT) was introduced at the Greater Poland Cancer Centre (GPCC) in April 2009. Retrospective analysis included data from the treatments performed for the first 656 patients treated with HT between May 2009 and May 2012 at the GPCC. In order to evaluate the implications on daily workload and scheduling of patients, stepwise regression and time analysis for each component of the overall treatment time, such as positioning, imaging, registration, and irradiation were performed. A detailed analysis included: (1) learning curves and optimized time needed for positioning and registration; (2) relation between irradiation time and parameters used for plan creation; and (3) average time of daily imaging. The irradiation component has the highest influence on the overall treatment time (R = 0.911). The lowest influence was observed for the imaging (R = 0.670). The learning curve for positioning was 7 months while the reduction of the average daily time needed for registration was observed even after two years. The irradiation time strongly depends on the planning parameters. Changing the pitch from 0.215 to 0.287 for pelvic cancer cases decreased the average daily beam-on time per patient by about 2 minutes. Similar changes for head and neck reduced this time by 1.3 minutes. The limitation in the usage of 1 cm field width only for complex cases, lower than 10 cm in the cranio-caudal direction, reduced the beam-on time per patient by 2 minutes. The average overall treatment time decreased from 21.5 minutes per patient in the first year of the HT usage to 13.8 minutes per patient in current practice. Our current practice shows that for a group of patients including mainly those with pelvis and head and neck cancers, the HT treatment takes approximately 15 minutes per patient allowing 40 patients to be treated within 10 hours.
| 1. | Malicki, J. The importance of accurate treatment planning, delivery, and dose verification. Rep Pract Oncol Radiother 17, 63–65 (2012). DOI: 10.1016/j.rpor.2012.02.001. Google Scholar, Crossref, Medline |
| 2. | Thwaites, D. I., Malicki, J. Physics and technology in ESTRO and in Radiotherapy and Oncology: Past, present and into the 4th dimension. Radiother Oncol 100, 327–332 (2011). DOI: 10.1016/j.radonc.2011.09.014. Google Scholar, Crossref, Medline, ISI |
| 3. | Beavis, A. Is tomotherapy the future of IMRT? Br J Radiol 77, 285–295 (2004). DOI: 10.1259/bjr/22666727. Google Scholar, Crossref, Medline, ISI |
| 4. | Yartsev, S., Kron, T., van Dyk, J. Tomotherapy as a tool in image-guided radiation therapy (IGRT): Theoretical and technological aspects. Biomed Imaging Interv J 3, e16 (2007). DOI: 10.2349/biij.3.1.e16. Google Scholar, Medline |
| 5. | Forrest, L. J., Mackie, T. R., Ruchala, K., Turek, M., Kapatoes, J., Jaradat, H. The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys 60, 1639–1644 (2004). DOI: 10.1016/j.ijrobp.2004.08.016. Google Scholar, Crossref, Medline, ISI |
| 6. | Jaffray, D. A., Siewerdsen, J. H. Cone-beam computed tomography with a fat-panel imager: Initial performance characterization. Med Phys 27, 1311–1323 (2000). DOI: 10.1118/1.599009. Google Scholar, Crossref, Medline, ISI |
| 7. | Steinke, M. F., Bezak, E. Technological approaches to in-room CBCT imaging. Australas Phys Eng Sci Med 31, 167–179 (2008). DOI: 10.1007/BF03179341. Google Scholar, Crossref, Medline, ISI |
| 8. | Dawson, L. A., Jaffray, D. A. Advances in image-guided radiation therapy. J Clin Oncol 25, 938–946 (2007). DOI: 10.1200/JCO.2006.09.9515. Google Scholar, Crossref, Medline, ISI |
| 9. | Paluska, P., Hanus, J., Sefrova, J., Rouskova, L., Grepl, J., Jansa, J. Utilization of cone-beam CT for offline evaluation of target volume coverage during prostate image-guided radiotherapy based on bony anatomy alignment. Rep Pract Oncol Radiother 17, 134–140 (2012). DOI: 10.1016/j.rpor.2012.03.003. Google Scholar, Crossref, Medline |
| 10. | Piotrowski, T., Kaczmarek, K., Bajon, T., Ryczkowski, A., Jodda, A., Kaźmierska, J. Evaluation of image-guidance strategies for prostate cancer. Technol Cancer Res Treat., 2013 August 31, Epub ahead of print. DOI: 10.7785/tcrtexpress.2013.600258. Google Scholar |
| 11. | Barbera, L., Jackson, L. D., Schulze, K., Groome, P. A., Foroudi, F., Delaney, G. P. Performance of different radiotherapy workload models. Int J Radiat Oncol Biol Phys 55, 1143–1149 (2003). DOI: 10.1016/S0360-3016(02)04400-0. Google Scholar, Crossref, Medline, ISI |
| 12. | Burnet, N. G., Routsis, D. S., Murrell, P., Burton, K. E., Taylor, P. J., Thomas, S. J. A tool to measure radiotherapy complexity and workload: Derivation from the basic treatment equivalent (BTE) concept. Clin Oncol (R Coll Radiol) 13, 14–23 (2001). DOI: 10.1053/clon.2001.9209. Google Scholar, Medline, ISI |
| 13. | Delaney, G., Gebski, V., Lunn, A. D., Lunn, M., Rus, M., Manderson, C. An assessment of the Basic Treatment Equivalent (BTE) model as measure of radiotherapy workload. Clin Oncol (R Coll Radiol) 9, 240–244 (1997). Google Scholar, Crossref, Medline |
| 14. | Kazmierczak, D., Bogusz-Czerniewicz, M. Identification of patient's requirements in quality management system in health care institutions. Rep Pract Oncol Radiother 17, 50–53 (2012). DOI: 10.1016/j.rpor.2011.10.006. Google Scholar, Crossref |
| 15. | Delaney, G., Rus, M., Gebski, V., Lunn, A. D., Lunn, M. Refinement of the basic treatment equivalent model to reflect radiotherapy treatment throughput using Australasian data. Australas Radiol 43, 507–513 (1999). DOI: 10.1046/j.1440-1673.1999.00747.x. Google Scholar, Crossref, Medline |
| 16. | Graighead, P., Herring, C., Hillier, C., Guo, D., Budden, J., Rans, K. The use of the Australian basic treatment equivalent (BTE) workload measure for linear accelerators in Canada. Clin Oncol (R Coll Radiol) 13, 8–13 (2001). DOI: 10.1053/clon.2001.9208. Google Scholar, Medline, ISI |
| 17. | Welsh, J. S., Patel, R. R., Ritter, M. A., Harari, P., Mackie, T. R., Mehta, M. P. Helical tomotherapy: An innovative technology and approach to radiation therapy. Technol Canc Res Treat 1, 55–63 (2002). Google Scholar, ISI |
| 18. | Piotrowski, T., Skórska, M., Jodda, A., Ryczkowski, A., Kaźmierska, J., Adamska, K. Tomotherapy — different way of dose delivery in radiotherapy. Wspolczesna Onkol (Contemporary Oncol) 16, 16–25 (2012). DOI: 10.5114/wo.2012.27332. Google Scholar, Crossref, Medline, ISI |
| 19. | Dejean, C., Kantor, G., de Figueiredo, B. Henriques, Lisbona, A., Mahé, M., Mervoyer, A. Helical tomotherapy: Description and clinical applications. Bull Cancer 97, 783–789 (2010). DOI: 10.1684/bdc.2010.1135. Google Scholar, Medline, ISI |
| 20. | Bijdekerke, P., Verellen, D., Tournel, K., Vinh-Hung, V., Somers, F., Bieseman, P. TomoTherapy: Implications on daily workload and scheduling patients. Radiother Oncol 86, 224–230 (2008). DOI: 10.1016/j.radonc.2007.10.036. Google Scholar, Crossref, Medline, ISI |
| 21. | Bauman, G., Yartsev, S., Rodrigues, G., Lewis, C., Venkatesan, V. M., Yu, E. A prospective evaluation of helical tomotherapy. Int J Radiat Oncol Biol Phys 68, 632–641 (2007). DOI: 10.1016/j.ijrobp.2006.11.052. Google Scholar, Crossref, Medline, ISI |
| 22. | Burnet, N. G., Adams, E. J., Fairfoul, J., Tudor, G. S. J., Hoole, A. C. F., Routsis, D. S. Practical aspects of implementation of helical tomotherapy for intensity-modulated and image-guided radiotherapy. Clin Oncol 22, 294–312 (2010). DOI: 10.1016/j.clon.2010.02.003. Google Scholar, Crossref, ISI |
| 23. | Sterzing, F., Schubert, K., Sroka-Perez, G., Kalz, J., Debus, J., Herfarth, K. Helical tomotherapy. Experiences of the frst 150 patients in Heidelberg. Strahlenther Onkol 184, 8–14 (2008). DOI: 10.1007/s00066-008-1778-6. Google Scholar, Crossref, Medline, ISI |
| 24. | Bajon, T., Piotrowski, T., Antczak, A., Bak, B., Błasiak, B., Kaźmierska, J. Comparison of dose volume histograms for supine and prone position in patients irradiated for prostate cancer — A preliminary study. Rep Pract Oncol Radiother 16, 65–70 (2011). DOI: 10.1016/j.rpor.2011.01.003. Google Scholar, Crossref, Medline |
| 25. | McIlwraith, K. A., Blyth, C. A study of the effect on accuracy of the introduction of a bellyboard as an immobilisation device to the radical radiotherapy treatment of prostate cancer patients. J Radiother Pract 11, 162–169 (2012). DOI: 10.1017/S1460396911000276. Google Scholar, Crossref |
| 26. | Forastiere, A. A., Goepfert, H., Maor, M., Pajak, T. F., Weber, R., Morrison, W. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 349, 2091–2098 (2003). DOI: 10.1/056/NEJMoa031317. Google Scholar, Crossref, Medline, ISI |
| 27. | Piotrowski, T., Kaźmierska, J., Sokołowski, A., Skórska, M., Jodda, A., Ryczkowski, A. Impact of the spinal cord position uncertainty on the dose received during head and neck helical tomotherapy. J Med Imaging Radiat Oncol 57, 503–511 (2013). DOI: 10.1111/1754-9485.12056. Google Scholar, Crossref, Medline, ISI |
| 28. | Sen, A., West, M. K. Commissioning experience and quality assurance of helical tomotherapy machines. J Med Phys 34, 194–199 (2009). DOI: 10.4103/0971-6203.56078. Google Scholar, Crossref, Medline |
| 29. | Kissick, M. W., Mackie, T. R., Jeraj, R. A delivery transfer function (DTF) analysis for helical tomotherapy. Phys Med Biol 52, 2355–2365 (2007). DOI: 10.1088/0031-9155/52/9/002. Google Scholar, Crossref, Medline, ISI |
| 30. | Kinhikar, R. A., Murthy, V., Goel, V., Tambe, C. M., Dhote, D. S., Deshpande, D. D. Skin dose measurements using MOSFET and TLD for head and neck patients treated with tomotherapy. Appl Radiat Isot 67, 1683–1685 (2009). DOI: 10.1016/j.apradiso.2009.03.008. Google Scholar, Crossref, Medline, ISI |
| 31. | Sheng, K., Molloy, J. A., Read, P. W. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys 65, 917–923 (2006). DOI: 10.1016/j.ijrobp.2006.02.038. Google Scholar, Crossref, Medline, ISI |
| 32. | Fiorino, C., Dell'Oca, I., Pierelli, A., Broggi, S., De Martin, E., Di Muzio, N. Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy. Radiother Oncol 78, 276–282 (2006). DOI: 10.1016/j.radonc.2006.02.009. Google Scholar, Crossref, Medline, ISI |
| 33. | Moldovan, M., Fontenot, J. D., Gibbons, J. P., Lee, T. K., Rosen, I. I., Fields, R. S. Investigation of pitch and jaw width to decrease delivery time of helical tomotherapy treatments for head and neck cancer. Med Dosim 36, 397–403 (2011). DOI: 10.1016/j.meddos.2010.10.001. Google Scholar, Crossref, Medline, ISI |
| 34. | Piotrowski, T., Ryczkowski, A. Influence of the modulation factor on the treatment plan quality and execution time in Tomotherapy in head and neck cancer. In-phantom study. J Cancer Res Ther, accepted for publication (2013). Google Scholar |
| 35. | Ruchala, K. J., Olivera, G. H., Kapatoes, J. M. Limited-data image registration for radiotherapy positioning and verification. Int J Radiat Oncol Biol Phys 54, 592–605 (2002). Google Scholar, Crossref, Medline, ISI |
| 36. | Boswell, S., Tomé, W., Jeraj, R., Jaradat, H., Mackie, T. R. Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: An evaluation of the setup verification process for the special case of a rigid head phantom. Med Phys 33, 4395–4404 (2006). DOI: 10.1118/1.2349698. Google Scholar, Crossref, Medline, ISI |
| 37. | Draper, N. R., Smith, H. Applied Regression Analysis. Wiley & Sons, New York (1998). Google Scholar, Crossref |
| 38. | Ryczkowski, A., Piotrowski, T. Tomotherapy archive structure and new software tool for loading and advanced analysis of data contained in it. Rep Pract Oncol Radiother 16, 58–64 (2011). DOI: 10.1016/j.rpor.2011.01.004. Google Scholar, Crossref, Medline |
| 39. | Ramsey, C. R., Langen, K. M., Kupelian, P. A., Scaperoth, D. D., Meeks, S. L., Mahan, S. L. A technique for adaptive image-guided helical tomotherapy for lung cancer. Int J Radiat Oncol Biol Phys 64, 1237–1244 (2006). DOI: 10.1016/j.ijrobp.2005.11.012. Google Scholar, Crossref, Medline, ISI |
| 40. | Kron, T., Grigorov, G., Yu, E., Yartsev, S., Chen, J. Z., Wong, E. Planning evaluation of radiotherapy for complex lung cancer cases using helical tomotherapy. Phys Med Biol 49, 3675–3690 (2004). DOI: 10.1088/0031-9155/49/16/014. Google Scholar, Crossref, Medline, ISI |
| 41. | Scrimger, R. A., Tomé, W. A., Olivera, G. H., Reckwerdt, P. J., Mehta, M. P., Fowler, J. F. Reduction in radiation dose to lung and other normal tissues using helical tomotherapy to treat lung cancer, in comparison to conventional field arrangements. Am J Clin Oncol 26, 70–78 (2003). Google Scholar, Crossref, Medline, ISI |
| 42. | Moon, S. H., Shin, K. H., Kim, T. H., Yoon, M., Park, S., Lee, D. H. Dosimetric comparison of four different external beam partial breast irradiation techniques: Three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, helical tomotherapy, and proton beam therapy. Radiother Oncol 90, 66–73 (2009). DOI: 10.1016/j.radonc.2008.09.027. Google Scholar, Crossref, Medline, ISI |
| 43. | Caudrelier, J. M., Morgan, S. C., Montgomery, L., Lacelle, M., Nyiri, B., MacPherson, M. Helical tomotherapy for locoregional irradiation including the internal mammary chain in left-sided breast cancer: Dosimetric evaluation. Radiother Oncol 90, 99–105 (2009). DOI: 10.1016/j.radonc.2008.09.028. Google Scholar, Crossref, Medline, ISI |
| 44. | Goddu, S. M., Chaudhari, S., Mamalui-Hunter, M., Pechenaya, O. L., Pratt, D., Mutic, S. Helical tomotherapy planning for left-sided breast cancer patients with positive lymph nodes: Comparison to conventional multiport breast technique. Int J Radiat Oncol Biol Phys 73, 1243–1251 (2009). DOI: 10.1016/j.ijrobp.2008.11.004. Google Scholar, Crossref, Medline, ISI |
| 45. | Reynders, T., Tournel, K., de Coninck, P., Heymann, S., Vinh-Hung, V., van Parijs, H. Dosimetric assessment of static and helical tomotherapy in the clinical implementation of breast cancer treatments. Radiother Oncol 93, 71–79 (2009). DOI: 10.1016/j.radonc.2009.07.005. Google Scholar, Crossref, Medline, ISI |
| 46. | Mavroidis, P., Ferreira, B. C., Shi, C., Delichas, M. G., Lind, B. K., Papanikolaou, N. Comparison of the helical tomotherapy and MLC-based IMRT radiation modalities in treating brain and cranio-spinal tumors. Technol Cancer Res Treat 8, 3–14 (2009). Google Scholar, SAGE Journals, ISI |
| 47. | Tarnawski, R., Michalecki, L., Blamek, S., Hawrylewicz, L., Piotrowski, T., Slosarek, K. Feasibility of reducing the irradiation dose in regions of active neurogenesis for prophylactic cranial irradiation in patients with small-cell lung cancer. Neoplasma 58, 507–515 (2011). DOI: 10.4149/neo_2011_06_507. Google Scholar, Crossref, Medline, ISI |
| 48. | Rao, M., Yang, W., Chen, F., Sheng, K., Ye, J., Mehta, V. Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: Plan quality, delivery efficiency and accuracy. Med Phys 37, 1350–1359 (2010). DOI: 10.1118/1.3326965. Google Scholar, Crossref, Medline, ISI |
| 49. | Cozzi, L., Clivio, A., Bauman, G., Cora, S., Nicolini, G., Pellegrini, R. Comparison of advanced irradiation techniques with photons for benign intracranial tumours. Radiother Oncol 80, 268–273 (2006). DOI: 10.1016/j.radonc.2006.07.012. Google Scholar, Crossref, Medline, ISI |
| 50. | Fogliata, A., Clivio, A., Nicolini, G., Vanetti, E., Cozzi, L. Intensity modulation with photons for benign intracranial tumours: A planning comparison of volumetric single arc, helical arc and fixed gantry techniques. Radiother Oncol 89, 254–262 (2008). DOI: 10.1016/j.radonc.2008.07.021. Google Scholar, Crossref, Medline, ISI |
| 51. | van Vulpen, M., Field, C., Raaijmakers, C. P. J., Parliament, M. B., Terhaard, C. H. J., MacKenzie, M. A. Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 62, 1535–1539 (2005). DOI: 10.1016/j.ijrobp.2005.04.011. Google Scholar, Crossref, Medline, ISI |
| 52. | Sheng, K., Molloy, J. A., Larner, J. M., Read, P. W. A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer. Radiother Oncol 82, 174–178 (2007). DOI: 10.1016/j.radonc.2007.01.008. Google Scholar, Crossref, Medline, ISI |
| 53. | Chen, A. M., Sreeraman, R., Mathai, M., Vijayakumar, S., Purdy, J. A. Potential of helical tomotherapy to reduce dose to the ocular structures for patients treated for unresectable sinonasal cancer. Am J Clin Oncol 33, 595–598 (2010). DOI: 10.1097/COC.0b013e3181c44535. Google Scholar, Crossref, Medline, ISI |
| 54. | Voordeckers, M., Farrag, A., Everaert, H., Tournel, K., Storme, G., Verellen, D. Parotid gland sparing with helical tomotherapy in head-and-neck cancer. Int J Radiat Oncol Biol Phys 84, 443–448 (2012). DOI: 10.1016/j.ijrobp.2011.11.070. Google Scholar, Crossref, Medline, ISI |
| 55. | Cozzarini, C., Fiorino, C., Di Muzio, N., Alongi, F., Broggi, S., Cattaneo, M. Significant reduction of acute toxicity following pelvic irradiation with helical tomotherapy in patients with localized prostate cancer. Radiother Oncol 84, 164–170 (2007). DOI: 10.1016/j.radonc.2007.07.013. Google Scholar, Crossref, Medline, ISI |
| 56. | Rodrigues, G., Yartsev, S., Chen, J., Wong, E., D'Souza, D., Lock, M. A comparison of prostate IMRT and helical tomotherapy class solutions. Radiother Oncol 80, 374–377 (2006). DOI: 10.1016/j.radonc.2006.07.005. Google Scholar, Crossref, Medline, ISI |
| 57. | Shah, A. P., Chen, S. S., Strauss, J. B., Kirk, M. C., Coleman, J. L., Coon, A. B. A dosimetric analysis comparing treatment of low-risk prostate cancer with tomotherapy versus static field intensity modulated radiation therapy. Am J Clin Oncol 32, 460–466 (2009). DOI: 10.1097/COC.0b013e3181967d89. Google Scholar, Crossref, Medline, ISI |
| 58. | Engels, B., Soete, G., Tournel, K., Bral, S., De Coninck, P., Verellen, D. Helical tomotherapy with simultaneous integrated boost for high-risk and lymph node-positive prostate cancer: Early report on acute and late toxicity. Technol Cancer Res Treat 8, 353–359 (2009). Google Scholar, SAGE Journals, ISI |
| 59. | Di Muzio, N., Fiorino, C., Cozzarini, C., Alongi, F., Broggi, S., Mangili, P. Phase I-II study of hypofractionated simultaneous integrated boost with tomotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 74, 392–398 (2009). DOI: 10.1016/j.ijrobp.2008.08.038. Google Scholar, Crossref, Medline, ISI |

